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Conceptual theory of metasystem transition by Valentin Turchin

Valentin Turchin
1931-2010

Turchin V.F. The Phenomenon of Science: A 

Cybernetic Approach to Human Evolution. New 

York: Columbia University Press, 1977.

Turchin outlined the evolution of cybernetic 

properties of biological organisms and considered 

the evolution of scientific cognition as a 

continuation of biocybernetic evolution. To 

interpret the increase of complexity of cybernetic 

systems during evolution, Turchin proposed the 

metasystem transition theory. 

This book is in the web site:

http://pespmc1.vub.ac.be/POS/TurPOS.pdf



The metasystem transition

A transition from a lower level of system hierarchy to a next higher level is a

symbiosis of a number of systems Si of the lower level into the combined set i Si;

the symbiosis is supplemented by an emergence of the additional system C, which

controls the behavior of the combined set. This metasystem transition results in

the creation of the system S' of the new level (S' = C + i Si). The system S' can be

included as a subsystem into the next metasystem transition.

 

C 
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Si S' = 



The metasystem transition

Turchin characterizes the biological evolution by the following main

metasystem transitions:

control of position = movement

control of movement = irritability (simple reflex)

control of irritability = complex reflex

control of reflexes = associating

control of associating = thinking

control of thinking = culture



The metasystem transition

Turchin describes the metasystem transition as a certain cybernetic analog of the

physical phase transition.

He pays a special attention to the following features of such transition:

1) the quantitative accumulation of progressive traits in subsystems Si just

before a metasystem transition

2) reduplication and development of subsystems of the penultimate level of the

hierarchy after the metasystem transition.
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Models of interaction between learning and evolution
Backgrounds

Hinton, G. E., & Nowlan, S. J. (1987). How learning can guide evolution. Complex

Systems, 1(3), 495–502.

Mayley, G. (1997). Guiding or hiding: Explorations into the effects of learning on the

rate of evolution. In: P. Husbands & I. Harvey (Eds.). Proceedings of the fourth

European conference on artificial life (ECAL 97). (pp. 135–144). Cambridge,

Massachusetts: The MIT Press.



Models of interaction between learning and evolution
General scheme of modeling

The evolution of the population of learning agents is analyzed.

Each agent has a genotype and a phenotype.

Genotypes are optimized in the course of evolution, as a result of selection and

mutations. During one generation, the genotypes of agents do not change.

Phenotypes of agents are optimized in the process of generation through learning by

trial and error. At the end of a generation, agents are selected into the next

generation according to their fitness. Fitness is determined by the final phenotypes

obtained as a result of learning.

Genotypes and phenotypes have the same structure. At the beginning of the

generation, the phenotype of each agent is equal to its genotype.

The agent of the next generation inherits the genotype (slightly mutated) of its

parent. Therefore, the evolution has Darwinian character.



Model of interaction between learning and evolution
Single optimum 

Genotypes G and phenotypes P are encoded by long chains of binary (equal to 0 or 1) 

symbols. There is a single optimum S0 .

The fitness of the agent f is determined by Hamming distance ρ between final 

phenotype PF of the agent and this optimum:

f = exp[–βρ(PF , S0)],   β > 0 .

The model was analyzed by means of computer simulation.

Red’ko V.G. Mechanisms of interaction between learning and evolution // Biologically 

Inspired Cognitive Architectures. 2017. Vol. 22. PP. 95–103. 

DOI: 10.1016/j.bica.2017.10.002



Model of interaction between learning and evolution
Spin glass case 

Genotypes G and phenotypes P are encoded by long chains of bipolar symbols (equal to 

-1 or 1) symbols. There are very large numbers of local optima.

The fitness of the agent f is determined by the spin glass energy corresponding to final 

phenotype PF of the agent ( E(SPF) ):

f = exp[–βE(SPF)] , 

Red’ko V.G. Spin glass energy minimization through learning and evolution // Optical 

Memory and Neural Networks. 2020. Vol. 29. No. 3. PP. 187–197. 

DOI: 10.3103/S1060992X20030054



Model of interaction between learning and evolution.
Effects of interaction for simple chains of symbols

In outlined two cases, when genotypes and phenotypes are encoded by simple chains

of symbols, the following effects of the interaction between learning and evolution

are observed:

1) Genetic assimilation of acquired skills over a number of generations of Darwinian

evolution. During genetic assimilation, skills individually acquired through

individual learning are "reinvented" by evolution and are written directly into the

genotype of agents.

2) The hiding effect, in which strong learning slows down the evolutionary search

for optimal genotypes.

3) The effect of the influence of the load on learning, this load leads to a significant

acceleration of the evolutionary search.



Model of interaction between learning and evolution.
The case of Stuart Kauffman’s NK networks 

In this case, the evolution of the population of learning agents was also considered,

but the genotype and phenotype are encoded by Kaufman’s NK networks. Each

such network consists of N Boolean logic elements. Each logic element has K inputs

and one output. The signals at the inputs and outputs of the elements take on the

values 0 or 1. The outputs of some elements go to the inputs of others, these

connections are random, but the number of inputs K of each element is fixed. The

logic elements themselves are also chosen randomly.

The number of attractors of NK networks of agents is maximized during learning

and evolution.

The fitness of the agent is: f = exp[βM] , M is the number of attractors of the

phenotype of the agent at the end of the generation.



Model of interaction between learning and evolution
The case of Stuart Kauffman’s NK networks 

We tried to detect 3 mentioned effects of interaction between learning and evolution

in this case. However, only the hiding effect was found, and no genetic assimilation

and learning load effects were observed. Thus, the effects of the interaction between

learning and evolution strongly depend on the degree of correlation between

genotypes and phenotypes. For simple chains of symbols, there is a fairly strong

correlation between genotypes and phenotypes, but for Kauffman’s NK networks

there is no such strong correlation between genotypes and phenotypes, so only a

hiding effect was observed, which does not depend on such a correlation.

Red’ko V.G. Model of evolution and learning of Kauffman’s NK networks. Features of the interaction

between learning and evolution // Russian Advances in Fuzzy Systems and Soft Computing: Selected

Contributions to the 10th International Conference on “Integrated Models and Soft Computing in

Artificial Intelligence (IMSC-2021)”. CEUR Workshop Proceedings, Vol. 2965. Aachen, Germany,

2021. PP. 238–243.



Models of interaction between learning and evolution. Conclusion

1. Learning and evolution in the considered models have different rates of

optimization: high rate during learning, small rate during evolution.

2. Effects of the interaction between learning and evolution depend on correlation

between genotypes and phenotypes. If correlation is strong (for genotypes and

phenotypes coded by rather simple chains of symbols), then three effects (the

genetic assimilation, the hiding effect, the effect of influence of loading load) of

the interaction between learning and evolution are observed in our models. If

there is no such strong correlation (for genotypes and phenotypes coded by NK

Kaffman’s networks) only the hiding effect is observed.
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Model of autonomous agents with basic needs

We studied the model of population of autonomous agents that have the natural

needs: the need for eating, the need for reproduction, the need for security, and the

exploratory need. For any need there is a motivation corresponding to this need.

Agents are in a two-dimensional cellular world. The agent sees the situation in its cell

and in four adjacent cells. Each cell can contain only one agent. A cell can also

contain a portion of food and a predator. The agent has the resource R, which is

replenished when the agent is eating and lost when the agent is performing actions.

The time is discrete. The number of cells in the world is 900.

The number of predators NP is fixed. Initially, predators are randomly distributed

over the cells of the world. Each time moment, each predator moves one cell in a

random direction.

Initially, NF portions of food are randomly distributed among the cells of the world.

When a portion is eaten in a cell, a new portion of food is added to a random cell.



Model of autonomous agents with basic needs. Motivations

Dependence of the motivation to eat ME and the motivation to reproduce MR on the  

agent resource R.
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Model of autonomous agents with basic needs. Motivations

The exploratory motivation is MI .

The safety motivation is MS . We assume that when a predator is in the same cell as

an agent, this predator eats the agent. The values MI and MS are constant for a given

agent.

Each time moment the need corresponding to the maximum value of motivation is

determined, and an action corresponding to this leading need is performed.

The parameters R0 , R1 , MI , MS constitute the genotype of the agent:

G = {R0 , R1 , MI , MS } 



Model of autonomous agents with basic needs. Agent actions

Escaping a predator. When an agent sees a predator in a neighboring cell and MS is

large, then the security need becomes its leading one. Further the agent runs away

from the predator to one of the nearest free cells.

Eating. If the agent is in a cell with a portion of food, then if it has a leading need

for eating, the agent completely eat this portion. Its resource increases by ∆R.

Reproduction. If the need for reproduction the agent becomes leading, then the

agent reproduces: it divides in half. In this case, a part of the agent's resource is

transferred to the descendant. The offspring’s genotype G = {R0 , R1 , MI , MS } is

equal to the parent’s genotype (slightly mutated) The child agent is placed in a

random free nearest cell.



Model of autonomous agents with basic needs. Agent actions

Exploration of the world. If the exploration need of the agent becomes the leading

one, then the agent moves to one of the nearest 4 free cells in a random direction.

Resource consumption per action. After performing any action, the agent’s resource

decreases by ΔL.

The death of an agent. The agent dies if it is eaten by a predator or if its resource is

less than 0.



Model of autonomous agents with basic needs. The metasystem 
transition

Subsystems Si correspond to needs.

Control system C corresponds to mechanism of switching of leading motivations.

 

C 

S1 S2 Sn … 

Si S' = 



Model of autonomous agents with basic needs. Results of simulation

Time dependence of number of agents in the world at sufficiently large amount of

food. Number of cells with food is NF = 800. Without motivation means that a

leading motivation is chosen randomly.



Model of autonomous agents with basic needs. Results of simulation

Time dependence of number of agents in the world at small amount of food,

Number of cells with food is NF = 400. The population without motivation dies.



Model of autonomous agents with basic needs. Results of simulation

Time dependence of average motivation values in the world at sufficiently large

amount of food. Number of cells with food is NF = 800. Security is important.



Model of autonomous agents with basic needs. Results of simulation

Time dependence of average motivation values in the world at small amount of

food. Number of cells with food is NF = 300. Reproduction is important.



Model of autonomous agents with basic needs. 
Summary

The considered model characterizes behavior of population of agents that have

natural needs and motivations. Of course, the model is rather simple. In future, it is

interesting to analyze cognitive agents that have internal models of the world.



Towards modeling of cognitive evolution

We can underline the important role of internal models of biological organism.

Using these models, organisms can learn the regularities of the external

environment. These models can be considered as precursors of the models of nature

formed in scientific cognition.

Approaches to modeling of cognitive evolution are characterized in the book:

Red’ko V.G. Modeling of Cognitive Evolution. Toward the Theory of Evolutionary

Origin of Human Thinking. Moscow: KRASAND/URSS, 2018.


