

Research Professor ⇒ ⇒

National Institutes of Health, USA $\begin{array}{ccc} \text{Artificial Neural Computing, USA} \\ \Rightarrow & \text{Founded} \\ \end{array}$ http://ArtificialNeuralComputing.com

イロト (伊) (ミ) (ミ) (ミ) ミーのQ(V)

REFERENCES:

- \triangleright ON THEORY OF LEARNING:
	- ▶ V. V., "Towards a theory of machine learning", MLST 2 (3), 035012 (2020)
- \triangleright ON EVERYTHING AS LEARNING:
	- \blacktriangleright V. V., "The world as a neural network", Entropy 22 (11), 1210 (2020)
- \triangleright ON PHYSICS AS LEARNING:
	- ▶ QUANTUM: M.I.Katsnelson, V.V., "Emergent Quantumness in Neural Networks", Foundations of Physics 51 (5), 1-20 (2021)
	- I CRITICAL: M. I. Katsnelson, V.V., T.Westerhout, "Self-organized criticality in neural networks", arXiv:2107.03402
	- \triangleright GRAVITATIONAL: V.V., "Towards a theory of quantum gravity from neural networks", Entropy 24 (1), 7 (2021)
- \triangleright ON BIOLOGY AS LEARNING:
	- ▶ THEORY: V.V., Y.I. Wolf, M. I. Katsnelson, E.V. Koonin, "Towards a Theory of Evolution as Multilevel Learning", PNAS 119 (6) (2022)
	- PHENOMENOLOGY: V.V., Y.I. Wolf, E.V. Koonin, M. I. Katsnelson, "Thermodynamics of Evolution and the Origin of Life", PNAS 119 (6)
	- \blacktriangleright NUMERICS: A.Grabovsky, V.V., "Bio-inspired machine learning: programmed death and replication", (to appear on arXiv tonight)
	- EXPERIMENT: In progress.

THE PROBLEM OF LEARNING

I During learning the loss function is minimized with respect to trainable variables

$$
\mathbf{q} = \left(\mathbf{q}^{(c)}, \mathbf{q}^{(a)}, \mathbf{q}^{(n)}\right)
$$

for a given training dataset of non-trainable variables,

$$
\mathbf{x} = \left(\mathbf{x}^{(o)}, \mathbf{x}^{(e)}\right)
$$

Easy to remember as C-A-N-O-E.

- \triangleright Near equilibrium, the first derivative of loss function with respect to q_i 's is small, but the second derivative can either be large for *core* variables, $\mathbf{q}^{(c)}$; small for *adaptable* variables, $\mathbf{q}^{(a)}$; or near zero, for *neutral* variables $\mathbf{q}^{(n)}$.
- \blacktriangleright From the biological perspective, this is equivalent to optimizing the state of an organism $\mathbf{x}^{(0)}$ with respect to the state of the environment $\mathbf{x}^{(e)}$ by adjusting the biological traits of organism, or equivalently the trainable degrees of freedom **q**.
- \triangleright On the time scale τ of life time of an organism, adaptable variables $\mathbf{q}^{(a)}$ are the phenotypic traits that quickly react to environmental changes **x**(*e*) , whereas the core variables $\mathbf{q}^{(c)}$ are the genomic sequences that change minimally if at all.

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi + 4 \Box$

ORGANISM MODELED AS A NEURAL NETWORK

The "canoe":

- \bullet **q**^(*c*) trainable genotype variables (red nodes/links)
- \bullet $\mathbf{q}^{(a)}$ trainable adaptive phenotypic variables (dark green nodes and links)
- \blacktriangleright **q**^(*n*) neutral variables (light green node)
- \blacktriangleright $\mathbf{x}^{(0)}$ non-trainable organism variables (red and green nodes)
- \blacktriangleright **x**^(e) non-trainable environmental variables (blue nodes)
 \blacktriangleleft \Box

NEURAL NETWORK THEORY

- \triangleright Consider a learning system represented as a neural network, with the state vector described by trainable variables **q** (e.g. weight matrix \hat{w} and bias vector **b**) and non-trainable variables **x** (e.g. state vector of individual neurons).
- \triangleright Non-trainable variables are updated in discrete time-steps

$$
x_i(t+1) = f_i\left(\sum_j w_{ij} x_j(t) + b_i\right)
$$
 (1)

where $f_i(y)$'s are some non-linear activation functions (e.g. hyperbolic tangent).

 \blacktriangleright Trainable variables are updated according to (stochastic) gradient descent

$$
q_i(t+1) = q_i(t) - \gamma \frac{\partial H(\mathbf{x}(t), \mathbf{q}(t))}{\partial q_i}
$$
 (2)

where γ is the learning rate parameter and $H(\mathbf{x}, \mathbf{q})$ is the loss function.

 \blacktriangleright For example, "boundary" loss function is

$$
H_e(\mathbf{x}, \mathbf{q}) \equiv \frac{1}{2} \sum_i \left(x_i^{(e)} - f_i^{(e)} \left(\mathbf{x}^{(o)}, \mathbf{q} \right) \right)^2 \tag{3}
$$

and "bulk" loss function is

$$
H(\mathbf{x}, \mathbf{q}) = \frac{1}{2} \sum_{i} \left(x_i - f_i \left(\mathbf{x}^{(o)}, \mathbf{q} \right) \right)^2 + V(\mathbf{x}, \mathbf{q}).
$$
\n(4)

FITNESS FUNCTION

 \blacktriangleright Bulk loss function

$$
H(\mathbf{x}, \mathbf{q}) = \frac{1}{2} \sum_{i} (x_i - f_i(\mathbf{x}, \mathbf{q}))^2 + V(\mathbf{x}, \mathbf{q})
$$
(5)

- \blacktriangleright The kinetic term reflects the ability of organisms (or learning subsystems) to predict the changes in the state of the given environment over time, whereas the potential term reflects its compatibility with a given environment.
- In the context of biological evolution, Malthusian fitness φ is defined as the expected reproductive success of a given genotype, that is, the rate of change of the prevalence of the given genotype in an evolving population.
- \blacktriangleright In the context of the theory of learning (as we shall see) the more relevant function is additive fitness $\log \varphi$ which is related to the loss function through

$$
H(\mathbf{x}, \mathbf{q}) = -T \log \varphi(\mathbf{x}, \mathbf{q}).
$$
 (6)

 \blacktriangleright At the level of microscopic description of learning, the proportionality constant *T* is unimportant, but at the level of statistical ensembles, $\beta = T^{-1}$ is the Lagrange multiplier which imposes constraint on the average loss function.

BIOSPHERE MODELED AS A NEURAL NETWORK

 $\circledcirc \circledcirc \circledcirc$

MULTILEVEL LEARNING

- \blacktriangleright Evidently, depending on the time-scale τ the same degree of freedom might be described using different variables (e.g. **q**(*c*), **q**(*a*), **q**(*n*), **x**(*o*), **x**(*e*),).
- \blacktriangleright It is useful to partition all these variables into three classes depending on how fast they change with respect to τ , i.e. considered time scale:
	- 1. slow-changing variables are the already well trained and effectively constant degrees of freedom $\mathbf{g}^{(c)}$ that only change on time scales $\gg \tau$.
	- 2. intermediate-changing variables are either adaptable $\mathbf{q}^{(a)}$ or neutral $\mathbf{q}^{(n)}$ variables that change on time scales $\sim \tau$.
	- 3. fast-changing variables are the non-trainable variables that characterize an organism $(\mathbf{x}^{(0)})$ and its environment $(\mathbf{x}^{(e)})$, and change on time scales $\ll \tau$.

STATISTICAL MECHANICS OF EVOLUTION

- **Maximum entropy principle:** distribution of any quantity is given by the highest entropy distribution subject to the relevant constraints.
	- \blacktriangleright For example, constraint imposed on the average loss function

$$
\int d^N x H(\mathbf{x}, \mathbf{q}) p(\mathbf{x}|\mathbf{q}) = U(\mathbf{q})
$$
\n(7)

I Prob. distribution over non-trainable variables (a.k.a. canonical ensemble) $p(x|q) \propto \exp(-\beta H(x,q))$ (8)

Corresponding partition function (or macroscopic counterpart of fitness)

$$
\mathcal{Z}(\beta, \mathbf{q}) \equiv \int d^N x \, e^{-\beta H(\mathbf{x}, \mathbf{q})} \tag{9}
$$

I *Free energy* encodes everything there is to know about the system

$$
F(\beta, \mathbf{q}) \equiv -\beta^{-1} \log \mathcal{Z}(\beta, \mathbf{q}) \tag{10}
$$

average loss function

$$
U(\beta, \mathbf{q}) = \frac{\partial}{\partial \beta} \left(\beta F(\beta, \mathbf{q}) \right), \tag{11}
$$

entropy of non-trainable variables (e.g. environment)

$$
S(\beta, \mathbf{q}) = \beta^2 \frac{\partial}{\partial \beta} F(\beta, \mathbf{q})
$$
(12)

THERMODYNAMICS OF EVOLUTION

 \blacktriangleright From the first and second laws of learning/thermodynamics:

$$
dF = dU - TdS + \mathbf{Q} \cdot d\mathbf{q} = 0, \tag{13}
$$

▶ *Biological* temperature is defined as

$$
T = \beta^{-1} \tag{14}
$$

KOD KARA KED KED E YOUR

where β is a Lagrange multiplier which imposed a constraint on the average loss.

I When the number of variables can vary then, the *grand potential* must vanish

$$
d\Omega = dU - TdS - \mu dK = 0 \tag{15}
$$

where μ is *evolutionary* potential.

At the level of the network of information processing units, μ describes evolutionary potential for adding/removing adaptable trainable variables.

POPULATION OF ORGANISMS

- \triangleright Consider an ensemble of organisms that differ from each other by the values of adaptable variables $\mathbf{g}^{(a)}$, whereas $\mathbf{g}^{(c)}$ are the same for all organisms.
- \blacktriangleright Ensemble can either represent a Bayesian (subjective) probability distribution over degrees of freedom of a single organism or a frequentist (objective) probability distribution over different organisms.
- \blacktriangleright In the limit of an infinite number of organisms, the two interpretations are indistinguishable, but in the context of actual biological evolution, the total number of organisms is only exponentially large

$$
N_e \propto \exp\left(bK\right) \tag{16}
$$

 \blacktriangleright Then to study the state of a learning equilibrium for a grand canonical ensemble of evolving organisms, it is convenient to express the average loss function phenomenologically as

$$
U(S,K) = T(S,K)S + \mu(S,K)K\tag{17}
$$

where the conjugate variables are, respectively, biological temperature

$$
T \equiv \frac{\partial U}{\partial S},\tag{18}
$$

and evolutionary potential

$$
\mu \equiv \frac{\partial U}{\partial K}.
$$
 (19)

IDEAL MUTATIONS MODEL

- \triangleright Consider N_e organisms described by genotypes $\mathbf{q}_1, ..., \mathbf{q}_{N_e}$ that can undergo rare mutations (on time-scales $\sim \tau$) followed by fast fixation (on shorter time-scales $\ll \tau$), but the total number of organisms *N_e* remains constant [Kimura (1983)]
- \triangleright Fixation on short time-scales implies that the state of the system is such that all organisms have the same genotype $q_1 = ... = q_{N_e} = q$ and equilibration on the longer time-scales implies that the marginal distribution is given by

$$
p(\mathbf{q}) \propto \int \prod_{n=1}^{N_e} d^N x_n \exp\left(-\beta \sum_{n=1}^{N_e} H(\mathbf{x}_n, \mathbf{q})\right) = \exp\left(-\beta N_e F(\mathbf{q})\right) \tag{20}
$$

where integration is taken over states of environment x_n for all organisms.

- \blacktriangleright This distribution was also considered by Sella and Hirsh in 2005, who interpreted N_e as inverse temperature whereas in our framework it is β .
- \blacktriangleright The distribution can also be expressed as

$$
p(\mathbf{q}) \propto \mathcal{Z}(\mathbf{q})^{N_e} \tag{21}
$$

where the partition function $\mathcal{Z}(\mathbf{q}) = \exp(-\beta F(\mathbf{q}))$ is the macroscopic counterpart of fitness $\varphi(\mathbf{x}, \mathbf{q}) = \exp(-\beta H(\mathbf{x}, \mathbf{q}))$.

 \blacktriangleright Prediction: if such a system evolved from one equilibrium to another then

$$
\frac{\log \mathcal{Z}^{(1)}(\mathbf{q})}{\log \mathcal{Z}^{(2)}(\mathbf{q})} = \frac{\beta_1 F(\mathbf{q})}{\beta_2 F(\mathbf{q})} = \frac{\beta_1}{\beta_2} = \frac{T_2}{T_1}
$$
(22)

mu[s](#page-15-0)t be [in](#page-8-0)dependentof **q**, that is, are the same for a[ll o](#page-12-0)r[ga](#page-14-0)[ni](#page-12-0)[sm](#page-13-0)s in [th](#page-15-0)[e](#page-16-0) [e](#page-8-0)[n](#page-9-0)s[em](#page-16-0)[ble.](#page-0-0) $\Box \Box \Box$

PHENOMENOLOGICAL MODELING

 \triangleright Obtained distribution enables us to calculate the average loss function

$$
U(K) = \langle H(\mathbf{x}, \mathbf{q}) N_e \rangle \propto \langle H(\mathbf{x}, \mathbf{q}) \rangle \exp(bK), \qquad (23)
$$

where $\langle H(\mathbf{x}, \mathbf{q}) \rangle$ is the average loss of individual organisms, but the dependence on entropy is not yet explicit.

In principle, we should be able to reconstruct $U(S, K)$ directly from experiment or simulation, but for the sake of illustration, consider a phenomenological model

$$
U(S, K) = \langle H(\mathbf{x}, \mathbf{q}) N_e \rangle = aS^n \exp\left(\frac{b}{S} K\right)
$$
 (24)

\blacktriangleright Thus we assume:

- \blacktriangleright loss function of individual organisms scales as $\langle H(\mathbf{x}, \mathbf{q}) \rangle \propto S^n$ from some $n > 0$, i.e. the loss is greater in an environment with a higher entropy and
- In the number of adaptable variables scales as $K \propto S \log N_e$, i.e. the large the entropy *S* in the environment the more variables are required to learn it
- \triangleright By preforming Legendre transformation of $U(S, K)$ we obtain grand potential

$$
\Omega(T,\mu) = -a(n-1) \left(\frac{\mu}{eb}\right)^{\frac{n}{n-1}} \exp\left(\frac{bT}{(n-1)\mu}\right),\tag{25}
$$

which can be reconstructed from numerical simulations or observations of time-series of [the](#page-13-0) numbe[r](#page-15-0) of organi[s](#page-15-0)ms $N_e(t)$ $N_e(t)$ $N_e(t)$ $N_e(t)$ and of their [fit](#page-13-0)[nes](#page-14-0)s $Z(\mathbf{g}, t)$ $Z(\mathbf{g}, t)$ [.](#page-9-0) OQ

MAJOR (AND MINOR) TRANSITIONS IN EVOLUTION

 \blacktriangleright Phase transitions from a gas of non-interacting subsystems defined by

$$
\langle N_e \rangle = \bar{N_e} \tag{26}
$$

to a gas of interacting subsystems defined by

$$
\langle K \rangle = \bar{K} \tag{27}
$$

Mathematically transition is from grand canonical ensemble (e.g. molecules)

$$
\Omega_p(\mathcal{T}, \mathcal{M}) \propto \mathcal{T}^{\alpha} \exp\left(\gamma \mathcal{M}/\mathcal{T}\right) \tag{28}
$$

to grand canonical ensemble (e.g. organisms)

$$
\Omega_b(T,\mu) \propto \mu^c \exp\left(\frac{b}{T/\mu}\right) \tag{29}
$$

At the point of phase transition the two potentials are equal

$$
\Omega_p(\mathcal{T}_0,\mathcal{M}_0) \propto \mathcal{T}_0^{\alpha} e^{\gamma \mathcal{M}_0/\mathcal{T}_0} = \left(e^{\frac{bT_0}{\alpha \mu_0}}\right)^{\alpha} e^{c \log(\mu_0)} = e^{b \frac{T_0}{\mu_0}} \mu_0^c \propto \Omega_b(T_0,\mu_0), \tag{30}
$$

where $T_0 = \frac{\alpha}{b} \mu_0 \log(\mathcal{T}_0)$ and $\mathcal{M}_0 = \frac{c}{\gamma} \mathcal{T}_0 \log(\mu_0)$

After the phase transition a new level (i.e. new scale[\) in](#page-14-0) [th](#page-16-0)[e](#page-14-0) [hie](#page-15-0)[ra](#page-16-0)[r](#page-8-0)[ch](#page-9-0)[y](#page-15-0) [i](#page-16-0)[s](#page-8-0) [f](#page-9-0)[or](#page-15-0)[m](#page-16-0)[ed.](#page-0-0) OQ

FORMATION OF NEW LEVELS IN EVOLUTION OF CORONAVIRUS

 OQ

CONCLUSION

1. THEORY: ARTIFICIAL NEURAL NETWORKS

- \blacktriangleright major evolutionary phenomena can be modeled using neural networks
- I multilevel learning implies the *same* evolutionary dynamics on all levels
- \blacktriangleright generalized central dogma is derived in the context of deep networks
- 2. PHENOMENOLOGY: LEARNING THEORY
	- \triangleright biological counterparts of temperature and chem. potential are identified
	- \triangleright grand potential can be reconstructed phenomenologically from data
	- \blacktriangleright major transitions in evolution can be described as phase transitions
- 3. EXPERIMENT: BIOLOGICAL OBSERVATIONS
	- \blacktriangleright formation of new levels in evolution of coronavirus was observed
	- \blacktriangleright more observational, experimental and numerical tests are needed
	- \blacktriangleright e.g. statistical biology, collider biology, artificial biology, etc.

For questions and comments feel free to email me at vitaly.vanchurin@gmail.com