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THE PROBLEM OF LEARNING

I During learning the loss function is minimized with respect to trainable variables

q =
⇣

q
(c),q

(a),q
(n)

⌘

for a given training dataset of non-trainable variables,

x =
⇣

x
(o), x

(e)
⌘

Easy to remember as C-A-N-O-E.
I Near equilibrium, the first derivative of loss function with respect to qi’s is small,

but the second derivative can either be large for core variables, q
(c); small for

adaptable variables, q
(a); or near zero, for neutral variables q

(n).
I From the biological perspective, this is equivalent to optimizing the state of an

organism x
(o) with respect to the state of the environment x

(e) by adjusting the
biological traits of organism, or equivalently the trainable degrees of freedom q.

I On the time scale ⌧ of life time of an organism, adaptable variables q
(a) are the

phenotypic traits that quickly react to environmental changes x
(e) , whereas the

core variables q
(c) are the genomic sequences that change minimally if at all.
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ORGANISM MODELED AS A NEURAL NETWORK

The “canoe”:
I q

(c) trainable genotype variables (red nodes/links)
I q

(a) trainable adaptive phenotypic variables (dark green nodes and links)
I q

(n) neutral variables (light green node)
I x

(o) non-trainable organism variables (red and green nodes)
I x

(e) non-trainable environmental variables (blue nodes)
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NEURAL NETWORK THEORY
I Consider a learning system represented as a neural network, with the state

vector described by trainable variables q (e.g. weight matrix ŵ and bias vector b)
and non-trainable variables x (e.g. state vector of individual neurons).

I Non-trainable variables are updated in discrete time-steps

xi(t + 1) = fi

0

@
X

j

wijxj(t) + bi

1

A (1)

where fi(y)’s are some non-linear activation functions (e.g. hyperbolic tangent).
I Trainable variables are updated according to (stochastic) gradient descent

qi(t + 1) = qi(t)� �
@H(x(t),q(t))

@qi
(2)

where � is the learning rate parameter and H(x,q) is the loss function.
I For example, “boundary” loss function is

He(x,q) ⌘
1
2

X

i

⇣
x(e)
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and “bulk” loss function is

H(x,q) =
1
2

X

i

⇣
xi � fi

⇣
x
(o),q

⌘⌘2
+ V(x,q). (4)
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FITNESS FUNCTION

I Bulk loss function

H(x,q) =
1
2

X

i

(xi � fi (x,q))2 + V(x,q) (5)

I The kinetic term reflects the ability of organisms (or learning subsystems) to
predict the changes in the state of the given environment over time, whereas the
potential term reflects its compatibility with a given environment.

I In the context of biological evolution, Malthusian fitness ' is defined as the
expected reproductive success of a given genotype, that is, the rate of change of
the prevalence of the given genotype in an evolving population.

I In the context of the theory of learning (as we shall see) the more relevant
function is additive fitness log' which is related to the loss function through

H(x,q) = �T log'(x,q). (6)

I At the level of microscopic description of learning, the proportionality constant
T is unimportant, but at the level of statistical ensembles, � = T�1 is the
Lagrange multiplier which imposes constraint on the average loss function.
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BIOSPHERE MODELED AS A NEURAL NETWORK
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MULTILEVEL LEARNING
I Evidently, depending on the time-scale ⌧ the same degree of freedom might be

described using different variables (e.g. q
(c), q

(a), q
(n), x

(o), x
(e), ).

I It is useful to partition all these variables into three classes depending on how
fast they change with respect to ⌧ , i.e. considered time scale:

1. slow-changing variables are the already well trained and effectively
constant degrees of freedom q

(c) that only change on time scales � ⌧ .
2. intermediate-changing variables are either adaptable q

(a) or neutral q
(n)

variables that change on time scales ⇠ ⌧ .
3. fast-changing variables are the non-trainable variables that characterize an

organism (x(o)) and its environment (x(e) ), and change on time scales ⌧ ⌧ .

smaller ⌧ larger ⌧
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STATISTICAL MECHANICS OF EVOLUTION
I Maximum entropy principle: distribution of any quantity is given by the

highest entropy distribution subject to the relevant constraints.
I For example, constraint imposed on the average loss function

Z
dNx H(x,q)p(x|q) = U(q) (7)

I Prob. distribution over non-trainable variables (a.k.a. canonical ensemble)

p(x|q) / exp (��H(x,q)) (8)

I Corresponding partition function (or macroscopic counterpart of fitness)

Z(�,q) ⌘
Z

dNx e��H(x,q) (9)

I Free energy encodes everything there is to know about the system

F(�,q) ⌘ ���1 logZ(�,q) (10)
I average loss function

U(�,q) =
@

@�
(�F(�,q))) , (11)

I entropy of non-trainable variables (e.g. environment)

S(�,q) = �2 @

@�
F(�,q) (12)
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THERMODYNAMICS OF EVOLUTION

I From the first and second laws of learning/thermodynamics:

dF = dU � TdS + Q · dq = 0, (13)

I Biological temperature is defined as

T = ��1 (14)

where � is a Lagrange multiplier which imposed a constraint on the average loss.
I When the number of variables can vary then, the grand potential must vanish

d⌦ = dU � TdS � µdK = 0 (15)

where µ is evolutionary potential.
I At the level of the network of information processing units, µ describes

evolutionary potential for adding/removing adaptable trainable variables.
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POPULATION OF ORGANISMS
I Consider an ensemble of organisms that differ from each other by the values of

adaptable variables q
(a), whereas q

(c) are the same for all organisms.
I Ensemble can either represent a Bayesian (subjective) probability distribution

over degrees of freedom of a single organism or a frequentist (objective)
probability distribution over different organisms.

I In the limit of an infinite number of organisms, the two interpretations are
indistinguishable, but in the context of actual biological evolution, the total
number of organisms is only exponentially large

Ne / exp (bK) (16)

I Then to study the state of a learning equilibrium for a grand canonical ensemble
of evolving organisms, it is convenient to express the average loss function
phenomenologically as

U(S,K) = T(S,K)S + µ(S,K)K (17)

where the conjugate variables are, respectively, biological temperature

T ⌘
@U
@S

, (18)

and evolutionary potential

µ ⌘
@U
@K

. (19)
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IDEAL MUTATIONS MODEL
I Consider Ne organisms described by genotypes q1, ...,qNe that can undergo rare

mutations (on time-scales ⇠ ⌧ ) followed by fast fixation (on shorter time-scales
⌧ ⌧ ), but the total number of organisms Ne remains constant [Kimura (1983)]

I Fixation on short time-scales implies that the state of the system is such that all
organisms have the same genotype q1 = ... = qNe = q and equilibration on the
longer time-scales implies that the marginal distribution is given by

p(q) /
Z NeY

n=1

dNxn exp

0

@��
NeX

n=1

H(xn,q)

1

A = exp (��NeF(q)) (20)

where integration is taken over states of environment xn for all organisms.
I This distribution was also considered by Sella and Hirsh in 2005, who

interpreted Ne as inverse temperature whereas in our framework it is �.
I The distribution can also be expressed as

p(q) / Z(q)Ne (21)

where the partition function Z(q) = exp(��F(q)) is the macroscopic
counterpart of fitness '(x,q) = exp(��H(x,q).

I Prediction: if such a system evolved from one equilibrium to another then

logZ(1)(q)

logZ(2)(q)
=

�1F(q)
�2F(q)

=
�1

�2
=

T2

T1
(22)

must be independent of q, that is, are the same for all organisms in the ensemble.
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PHENOMENOLOGICAL MODELING
I Obtained distribution enables us to calculate the average loss function

U(K) = hH(x,q)Nei / hH(x,q)i exp (bK) , (23)

where hH(x,q)i is the average loss of individual organisms, but the dependence
on entropy is not yet explicit.

I In principle, we should be able to reconstruct U(S,K) directly from experiment
or simulation, but for the sake of illustration, consider a phenomenological
model

U(S,K) = hH(x,q)Nei = aSn exp

✓
b
S

K
◆

(24)

I Thus we assume:
I loss function of individual organisms scales as hH(x,q)i / Sn from some

n > 0, i.e. the loss is greater in an environment with a higher entropy and
I the number of adaptable variables scales as K / S log Ne, i.e. the large the

entropy S in the environment the more variables are required to learn it
I By preforming Legendre transformation of U(S,K) we obtain grand potential

⌦(T, µ) = �a(n � 1)
✓

µ

eb

◆ n
n�1

exp

✓
bT

(n � 1)µ

◆
, (25)

which can be reconstructed from numerical simulations or observations of
time-series of the number of organisms Ne(t) and of their fitness Z(q, t).
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MAJOR (AND MINOR) TRANSITIONS IN EVOLUTION
I Phase transitions from a gas of non-interacting subsystems defined by

hNei = N̄e (26)

to a gas of interacting subsystems defined by

hKi = K̄ (27)

I Mathematically transition is from grand canonical ensemble (e.g. molecules)

⌦p(T ,M) / T ↵ exp (�M/T ) (28)

to grand canonical ensemble (e.g. organisms)

⌦b(T, µ) / µc exp (bT/µ) (29)

I At the point of phase transition the two potentials are equal

⌦p(T0,M0) / T ↵
0 e�M0/T0 =

✓
e

bT0
↵µ0

◆↵

ec log(µ0) = eb T0
µ0 µc

0 / ⌦b(T0, µ0), (30)

where T0 = ↵
b µ0 log(T0) and M0 = c

� T0 log(µ0)

I After the phase transition a new level (i.e. new scale) in the hierarchy is formed.
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FORMATION OF NEW LEVELS IN EVOLUTION OF CORONAVIRUS
London - early pandemic:

London - late pandemic:
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CONCLUSION

1. THEORY: ARTIFICIAL NEURAL NETWORKS
I major evolutionary phenomena can be modeled using neural networks
I multilevel learning implies the same evolutionary dynamics on all levels
I generalized central dogma is derived in the context of deep networks

2. PHENOMENOLOGY: LEARNING THEORY
I biological counterparts of temperature and chem. potential are identified
I grand potential can be reconstructed phenomenologically from data
I major transitions in evolution can be described as phase transitions

3. EXPERIMENT: BIOLOGICAL OBSERVATIONS
I formation of new levels in evolution of coronavirus was observed
I more observational, experimental and numerical tests are needed
I e.g. statistical biology, collider biology, artificial biology, etc.

For questions and comments feel free to email me at vitaly.vanchurin@gmail.com
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