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Biological evolution as a
modelling challenge

many-particle physics
versus many-particle biology ...

in common
@ many stochastically evolving variables
@ many interactions, via nonlinear equations

key differences

@ physics: usually detailed balance processes,
evolution towards equilibrium state, p..(o)=2Z""e

—BH(0O)

biology: almost never detailed balance,
we don’t know the stationary state, p..(o) =?

@ the nature of heterogeneity ...
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o Introduction

@ Heterogeneity in physics versus biology
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The nature of heterogeneity

@ most stat phys methods

; Y
are designed for A
homogeneous systems ' I I vEL!
and regular topologies T YT

— particles interchangeable
— either uniform ‘all-to-all’ interactions (mean-field), or
— use symmetries (transfer matrices, renormalization, ...)

@ statistical physics of !
heterogeneous systems

ieieie
RN
odale
R

— heterogeneity is random
(random forces, particle sizes, topologies, ...)

— use disorder-averaged generating functions
(replica analysis, generating functional analysis, ...)

— microscopic realization of disorder irrelevant
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Analysis of heterogeneous systems in physics
map to a (more tricky) homogeneous system

@ Replica method
compute disorder-averaged free energy density

- 1 1 1, T~ oan?
= — lim — - _ lim — lim = —BH(O)
f Nm, 1094 == im gy lim 7 log [;e ]
1 1 T ash Hoga)
— _lim —— lim - —BYl_4HO>) |
o J;@o 8n NIE;noo N log [ Z ¢ 1 ]
o'l..on
final result:

single particle egn in equilibrium, n-replicated with n—0 ...
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Analysis of heterogeneous systems in physics
map to a (more tricky) homogeneous system

@ Replica method
compute disorder-averaged free energy density

- 1 1 1 m
= — lim — - _ lim — lim = —BH(O)
f Nm, 1094 == im gy lim 7 log [;e ]
1 1 T ash Hoga)
— _lim —— lim - —BYl_4HO>) |
o J;@o 8n NIE;noo N log [ Z ¢ 1 ]
o'l..on
final result:

single particle egn in equilibrium, n-replicated with n—0 ...
@ Generating functional analysis
compute disorder-average generating functional

Z[p] = e Zavilhoil) = Z ol i ¥i(Dai(t) P(o(0), ..., 0(tmax)) = ...
0(0),...,0 (tmax)

final result:
single particle eqn, retarded self-interaction + non-white noise ...
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Heterogeneity in blOIOgy

is never random ... CHARLES DARWIN
On the Origin

of Species
By Means of Natural Selection

molecular level cellular level organism level
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Heterogeneity in blOIOgy

is never random ... CHARLES DARWIN
On the Origin
of Species
By Means of Natural Selection
molecular level cellular level organism level

@ heterogeneous parameters are selected, based on complex criteria ...
@ microscopic realization of heterogeneity can be highly relevant

@ we cannot average generating functions over the heterogeneity,
because we cannot capture it in a probability distribution ...
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Heterogeneity in biology: TR

is never random ... CHARLES DARWIN
On the Origin

of Species
By Means of Natural Selection

molecular level cellular level organism level

@ heterogeneous parameters are selected, based on complex criteria ...
@ microscopic realization of heterogeneity can be highly relevant

@ we cannot average generating functions over the heterogeneity,
because we cannot capture it in a probability distribution ...

should we forget about disordered systems tools?
(replicas, generating functionals, cavity method, ...)
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How to capture slow dynamics:

heterogeneity in evolving codes
quantitative biology (genotypesyy)
model how it is generated ‘
fitness innovation
fast dynamics:

interacting organisms
(phenotypes x)
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How to Capture slow dynamics:
heterogeneity in evolving codes
quantitative biology (genotypesyy)

model how it is generated

fitness innovation

fast dynamics:

interacting organisms
(phenotypes x)

@ coupled stochastic dynamics
on adiabatically separated timescales

@ phenotype dynamics: genotype + population interactions + environment
@ genotype dynamics: phenotype fitness + hardware constraints

Nt
population :  Py(x,y) = %t > ok —xi(t)] Ly — yi(t)]
i=1
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e Inspiration from statistical physics
@ Ising spin systems with Hebbian bond evolution
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Ising spin systems with slowly evolving interactions
(inspired by learning in neural networks)

@ standard spin dynamics,
evolving to equilibrium state

p(O’|J) = ZZJ)eiﬁH(0.7J)7 H(O’,J) = - ZJiJUJj - Zo—iei

i<j i

ZW)=> e Mo FU) = —% log Z(J)

o
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Ising spin systems with slowly evolving interactions
(inspired by learning in neural networks)

@ standard spin dynamics,
evolving to equilibrium state

_ 1 —sHO 9 _ o 0.
p(o]d) = Z0)° ., H(e,Jd) = ;ja,an, Zo—,e,
ZW)=> e Mo FU) = —% log Z(J)

o

@ slow stochastic bond dynamics,
Langevin egn

d 1 1
Tl = N (G10))spins — pj + ﬁﬁi/(f)

mi(t)) =0, (mi(O)mke(t')) = 27 Td(1y,k,0)0(t—1)
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stationary state of coupled system?
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stationary state of coupled system?

@ use a
<Oi0j>spins - 78;.,/]

d d
FO):  Nrgpdi= *aT,,-H(") + VN (1)

1 1 >
HW) =—=logZJ) + =uN Jii
Gibbs-Boltzmann state V) B 92(J) 2! ; !

Po(d) = Z71e"PHO)
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stationary state of coupled system?

@ use o d o \/7
(0i0))spins = 7(9J/j FJ): NTEJ,', = fa—#H(J) + vV Nn;(t)
1 1 2
HW)=—=10gZ() + -uN>» Jj
Gibbs-Boltzmann state ) B 9Z() Pl ; !
Pu(d) = Z71e P10
@ physics at largest timescales
z= [age i~ [ageilpmanim ]
F— _% log. /}1.1 Z(J)e~ $PUN iy
replica formula of disorder-averaged free energy
of SK model (modulo a constant), but with n=T/T ...
(compute for integer n, analytical continuation to real n)
analytically solvable!
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n= T/7' small: bond and spin dynamics weakly coupled
RSB, second order transitions

n= T/7' large: bond and spin dynamics strongly coupled
no RSB, first order transitions

Y= L T T 7 F 1_""!"“!','f'l' i
] 081 ﬁf\ﬂ"‘“""

] 08 ]

08 _ ,—;o °F os f! 3
o [ 2 0»4:‘ a‘0,4 r 7

r F - n=4

o ] oz 02f - l . ]
I N P ok ol 1 1 1 £
2 F 4 L7 08 0g 1 11
P—SG transition first order for n > 2

ACCC et al, Phys Rev B48, 1993
RW Penney et al, J Phys A26, 1993
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e Inspiration from statistical physics

@ XY spins and added layers of complexity
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XY spins and added layers of complexity

@ standard spin dynamics,
evolving to equilibrium state

1

PUSIY) = 75 PHESHD  H({Sh ) == JiSi- S
i<j

Z(J) = / dS; ... dSy e PHISIY), F(J):_%log 2(J)
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XY spins and added layers of complexity

@ standard spin dynamics,
evolving to equilibrium state

p({S}HN) = ﬁe*ﬁ*’“s]‘*”, H{SYHY) =~ J;iSi - §;

i<j
Z(J) = / dS;...dSye P Fy = —%Iog 2(J)
@ slow stochastic bond dynamics,
Langevin egn
d 1 1
3791 = NS0 Sidspins + uBj — pdj + ﬁn/j(t)

(1) =0, (mi(O)mee(t')) = 2T 81y, k,000(t— 1)

disorder :  P(Bj) = (zﬂB/N)*%e*%(BrBo/N)z/(B/N)
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stationary state of coupled system?
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stationary state of coupled system?

@ use 9 d 10 7;i(t)
(Si-S)upine = 57 F(9) dﬁ""f = W o3, M+ UN
HW) = —= IogZ MNZJ,? uN>~ Byd;
ﬂ i<j i<j

Gibbs-Boltzmann state
Poold) = 2o P
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stationary state of coupled system?

@ use 9 d 19 n;(t)
<s,.-s,>spm:—aEF(J). = H(J) + N

At = T NaJ;
1 1
HW) = —=log Z(J) + EMNZJ,-,Z —uN>" By

ﬂ i<j i<j

Gibbs-Boltzmann state
Poold) = 2o P

@ physics at largest timescales
/dJ _BHW) /dJe B~ 1 log ZW)+ JuN i 2~ uN S, By
F= *7; log / dd Z"(J)e PN ici Bidy— 1 BuN iy Jf
nc

replica formula of disorder-averaged free energy
of XY-spin model (modulo a constant), with n=T/T ...
(compute for integer n, analytical continuation to real n)
analytically solvable!
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two SG phases

SG1: freezing on spin timescales only, g; >0, go=0
SG2: freezing on all timescales, g1>0,q90>0

@ = n y (87, a-jm 53 (EF),

G Jongen et al, J Phys A31, 1998
G Jongen et al, J Phys A34, 2001
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e Inspiration from statistical physics

@ Link with the Parisi scheme
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Link with the Parisi scheme

SK model:

J2
N

&
N7

H=->Jjoio;, random bonds: Jj=
i<j
intuition: ‘slow’ spins act as slowly evolving
interactions between ‘fast’ spins ...

- 52
2 P
JI] - Jl/ =

@ assume spins evolving same disorder

on disparate timescales

same O

L
{1, Ny =Uio le same 01
( 0 ) L) same 02

oo =A{ajljel}, T 1
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Link with the Parisi scheme

SK model:

— Jo - 52 J2

H=->Jjoio;, random bonds: Jj=
i<j
intuition: ‘slow’ spins act as slowly evolving
interactions between ‘fast’ spins ...
@ assume spins evolving same disorder
on disparate timescales

same O

L
{1, Ny =Uio le same 01
( 0 ) L) same 02

oo =A{ajljel}, T 1

@ at each level ¢:
minimize free energy (Boltzmann’s H-theorem)

— Boltzmann form at each level ¢
— Hamiltonian at level ¢: free energy of level ¢+1
— constrained entropy at each level ¢: distinct temperatures T,
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@ resulting theory

level L, fastest spins:  Z, = Trg,e PH7),
higher levels ¢ < L : Z, = Tre, [Zea]™r1 iy = ﬁf; , BL=2p
0
m, : follow from values of constrained entropies S,
@ disorder-averaged ’ 1
free energy, Fo=——logZ = — lim — log Z"
=gyl % = fim g 109 %

at largest timescale
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@ resulting theory

level L, fastest spins: Z, = Trg,e PH),
higher levels ¢ < L : Z, = Tre, [Zea]™r1 iy = ﬁf; , BL=2p
0
m, : follow from values of constrained entropies S,
@ disorder-averaged ’ 1
free energy, Fo=——logZy = — lim =— log Z}
at largest timescale Bo -0 Nfo
@ assume ergodicity at each level ¢,
extremize f = limy_ oo (Fo/N)
over ¢ = |lg|/N:
ee > 1, €<t —0: slow spins are vanishing fraction,

entropy densities S¢/N — 0

L
for L—soo :  Parisi’s full RSB scheme, with m; = H my,
k=¢

J Van Mourik and ACCC, J Phys A34,. 2001
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e Application to biology
@ Self-programming in neural systems
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Self-programming in neural systems
bonds=programme evolving at multiple timescales

@ binary neurons o € {—1,1}",
evolving to equilibrium state

1 1
(@) = zigye T HE) = =3 oo+ N
i<y i<j
@ slow stochastic bond dynamics fixed root programme

¢=1...Lreprogramming levels ]
reprogramming of J

le ={(, ) my=7e, Tj=Te, pij=pe}
S ={Jjl (1)l

reprogramming of J2

reprogramming of Js

.. 1
Gi)el:  mesidy= 5 (o) - waﬁ%m(t)
(nfj(f)> =0, (ni()mke(t)) = 2Tud(i )y, k,00(t—1)
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stationary state of coupled system?
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stationary state of coupled system?

@ atlevel ¢:
Te%Jﬁ:—%%He(JZ,...,JL)+ TT\(;
Hi(...) = f% Iog;efﬁH(a,J)y Hyar(..) = 7% g ZL.. ]
Ze[J“‘,...,JL]:/de o= BeHe’ )
@ disorder:

level membership of bonds
L

() €{0,1}:  iddrv, Proble(D=1]=er > e =1

£=1
@ physics at largest timescales

M1
logZ, ™"

1
F=——logZ =—- Ilim
BL 9geL My —0 M1 L

(compute for integer my,1, analytical continuation to real m,1)

analytically solvable!
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as
8 8
30 P P P
25
. SG, . Ken
20
T T T
15 ! 4 4
10 5G
2P SG, 2PN SG»
0s .
SGsy
00 3 °
o0 o4 o0s 12 1s 20 o 2 4 & 8 10 12 wu o 2 4 & 8 10 12 1
T T T

@ increasingly complex phase diagrams
@ multiple SG states, indicating freezing on distinct timescales
@ first order transitions

@ re-entrance phenomena

T Uezu and ACCC, J Phys A35, 2002



e Application to biology

@ Genesis of protein structure
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Biological evolution:

genesis of protein structure

simple model of heteropolymer ‘ site i+1: (Ais1, Pitt1)
with slowly evolving composition %

genotype: (A1,..., Aw) w site - (A, 1)

(primary structure) 0
phenotype: (61, ..., én) ‘_21 site i—1: (A1, pi—1)
(secondary structure) s
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Biological evolution:
genesis of protein structure

simple model of heteropolymer ‘ site i+1: (Aip1, di1)

with slowly evolving composition % S
genotype: (Ai1,...,An) P site i1 (\i, ¢1)
(primary structure) 04 ‘

I site i—1: ()\,'_1,(;5,'_1)

phenotype: (&1,...,%n) Y {
(secondary structure) °

polarity forces

J, s
HBN) = =52 STEOER) dars
i

—Js > cos[(¢ir1— b)) — (¢i— ¢i-1) — a(\)]
f steric forces
Ai€{1,...,20}: amino-acid at site i

&N eR: polarity of amino-acid A
a(\) e[—m, «]: winding angle of amino-acid A
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slow dynamics of genotype (primary structure A):
@ if Areal: dy = < 9 [ (¢|)\)+U()\)]> +(d)
dt O
(m(1) =0, (m(t)n(t') = 2T5;8(t—1)

U(X) @ utility potential
rationale:

minimize H(¢|\) — protein folds
minimize U(X)  — protein is useful
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slow dynamics of genotype (primary structure A):

@ if A real: %A,:< ;A [H (¢|)\)+U(>\)]> +i(t)

(mi(t)) =0, (m(Om(t) = 2T8;5(t—t')

U(X) @ utility potential
rationale:
minimize H(¢|\) — protein folds
minimize U(X)  — protein is useful

@ use d, 0 '
a)\l - _aHeH(A) + ’f],(t)
Her(X) = UX) - 8 0g Zi(A),  Zi(A) = Yo MO
¢
@ physics at genetic timescale
— ,i —BHote(A) _ o MBU( (A)
fv = ~NlogZe = nﬂNlogsz()\
- B0y H@™ IA)=nBUA
N n6’N log Z Ze 1

¢ ..Pp" A
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calculations involve diagonalization of replicated transfer matrices
and techniques from random field spin chains

1.4 T T T
swollen phase
12 - 4
1oln=2.01 n=2 n=1.99
n=1.9
08
T/
I 06 n=1.5
0.4
n=1
02
collapsed phase
0.0 P L . . . .
00 01 02 03 04 05 06 07 08 Continuous bifurcations from
Js/Jdp swollen to collapsed states

n>2: 1st order transition

H Chakravorty et al, J Phys A35, 2002
S Rabello et al, J Phys A41, 2008
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e Application to biology

@ Finite-n replica approach to biological evolution
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Finite-n replica approach to biological evolution
generalization of the previous problem ...

codes (genotypes) : Yi,-- o, YN
organisms (phenotypes) : Xi,..., XN

Nt
population : Pi(x,y) = %t > " olx = xi(1)] 5[y — yi(1)]
=1
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Finite-n replica approach to biological evolution
generalization of the previous problem ...

codes (genotypes) : Yi,-- o, YN
organisms (phenotypes) : Xi,..., XN

Nt
population : Pi(x,y) = %t > " olx = xi(1)] 5[y — yi(1)]
=1

@ fast phenotype dynamics:

genomic instructions environment randomness
d —N— —N— N
ngx = —%[ Hxy)  + H&P) |+ ()
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Finite-n replica approach to biological evolution
generalization of the previous problem ...

codes (genotypes) : Yi,-- o, YN
organisms (phenotypes) : Xi,..., XN

Nt
population : Pi(x,y) = %t > " olx = xi(1)] 5[y — yi(1)]
=1

@ fast phenotype dynamics:

genomic instructions environment randomness
d —N— —N— N
ngx = —%[ Hxy)  + H&P) |+ ()

@ slow genotype dynamics:

@ stochastic, time scales 7, > 7«
@ favour codes y that give fit' phenotypes
o it x: low values of H(x,y) + H(x|P)
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Resulting genotype y phenotype x
model —

(slow dynamics) =~ (fast dynamics)
genomic instructions environment randomness
d —— —~ =
ngX = V| Hxy) o+ R+ 0
d
BV = -V Hxy) o+ H@y) |+ om0
N—— —— N——
genomic instructions coding hardware mutations, crossover, ...

solution?
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Resulting genotype y phenotype x
model —

(slow dynamics) =~ (fast dynamics)

genomic instructions environment randomness
d —— —~ =
ngX = V| Hxy) o+ R+ 0
d
BV = -V Hxy) o+ H@y) |+ om0
N—— —— N —
genomic instructions coding hardware mutations, crossover, ...

solution?
On evolutionary time scales:
(adiabatic separation: mx < 1)

Ty%y = - <VyH(X,V)>x‘y — VyHy(y)—|—ny(t)
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Resulting genotype y phenotype x
model —

(slow dynamics) =~ (fast dynamics)

genomic instructions environment randomness
d —— —~ =
ngX = V| Hxy) o+ R+ 0
d
BV = -V Hxy) o+ H@y) |+ om0
N—— —— N —
genomic instructions coding hardware mutations, crossover, ...

solution?
On evolutionary time scales:
(adiabatic separation: mx < 1)

Ty%y = - <VyH(X,V)>x‘y — VyHy(y)—|—ny(t)

P(xly) = ley)e_ﬁx [Hon ] - 7 ) = / dx o [HOY) Hi()]
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—Bx [HOGY)+Hhe(x)
<VyH(x, y)> — fdx © [ ] V,VH(X7 y)
xly [dx e [Hox o]
_r
Bx

v, log /dx o Bx [Hoy Hh0] V, Fx(y)
——

free energy
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Jax e e i0] @ pix y)

V, H(x, =
< 4 ( y)>x\y de e*ﬁx [H(va)Jer(x)}
= —5 Vg faxe o] _ g, Fy)
Bx N~——
free energy
hence d
By = = Vy[RW)+ H)] a0
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Jax e e i0] @ pix y)

V, H(x, =
< 4 ( y)>x\y ‘[‘dXe*Bx[H(ny)Jer(x)}
= 5 Vylog faxe bl _ g )
/Bx N——
free energy
hence d
By = = Vy[RW)+ H)] a0
Poly) = 1 s [ry+rv)

Zy
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Jax e e i0] @ pix y)

V, H(x, =
< 4 ( y)>x\y de e*ﬁx [H(va)Jer(x)}
= *évy log / ax e HeNT ] — g, F(y)
free energy
hence
d
By = = Vy[RW)+ H)] a0
Poly) = Zlyefﬂy[’:x(YHHy(Y)]
Equilibrium:
genotypic free energy
Fy — _Bly |Og /dy e—ﬁy [FX(V)‘*'H}/(V)}

By

_ 1 —ByHy(¥) Px
= -3 log /dye vy [Zx(y)]
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Replica method

n=By/Bx, Bx=p:

F, = 7’%5 Iog/dy e PN ZW]",  Zdy) = /dx o B HOY)+Hx (0]
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Replica method
n=By/Bx, Bx=p:

F, = 7’%5 Iog/dy e PN ZW]",  Zdy) = /dx o B HOY)+Hx (0]

(i) evaluate Z" for integer n
(if) compute Fy
(iii) analytical continuation to non-integer n
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Replica method

n=By/Bx, Bx=p:

F, = 7’%5 Iog/dy e PN ZW]",  Zdy) = /dx o B HOY)+Hx (0]

(i) evaluate Z" for integer n
(if) compute Fy
(iii) analytical continuation to non-integer n

Hcﬁ(x1 ety xn) = _18 |Og /dy eiﬂnHY(Y)ig Z{N\J A

@ n—0: random genotypes
@ n—1: annealed averages (as if timescales same)
@ n>2: first order transitions ...
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e Open questions
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Open questions

@ discrete slow variables:

nontrivial to define stochastic dynamics such that
slow Hamiltonian is free energy of the fast degrees of freedom ...

@ n = 2: boundary between 1st and 2nd order transitions
in coupled dynamics models with adiabatically separated time scales

what is special about T, /T, = 27

swollen phase

n=2

SG2 04

collapsed phase |

00
20 30 00 01 02 03 04 05 06 07 08

n Js/Jp

Evolution and Replicas 35/37



e Summary
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Summary

@ Evolution: coupled dynamics of fast and slow degrees of freedom
(phenotype and genotype)

@ Assume both minimise stochastically the same energy function
(‘fitness’ + constraints + utility)

@ In the regime of adiabatically separated timescales:
finite n replica theories in equilibrium, with N = Tiast / Tsiow

@ Models analytically solvable, expressions for heterogeneity distribution

@ For n > 2 (strong coupling between slow and fast variables):
first order phase transitions
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