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Two main messages

I. Frustrations and competing interactions as main physical
mechanisms of biological complexity

Phys. Scr. 93 (2018) 043001 (12pp) https:/ /doi.org/10.1088,/1402-4896/aaaba4
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Connection: frustrations due to incompatibility of short-term
and large-term optimization problems
Equivalence: Energy landscape (physics) - Fitness landscape (biology) -
Loss function landscape (learning)

See talks by Vitaly Vanchurin and Eugene Koonin at this workshop



Complexity

Schrodinger: life substance is “aperiodic crystal” (modern formulation — Laughlin,
Pines and others — glass)

Intuitive feeling: crystals are simple, biological structures are complex

Origin and evolution of life: origin of complexity?



Complexity (“patterns”) in inorganic world
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Stripe domains in ferromagnetic thin
films

(Sci Rep 9,
% 7454 (2019))

Microstructures in metals
and alloys



Magnetic patterns

Example: strip domains in thin ferromagnetic films

PHYSICAL REVIEW B 69, 064411 (2004)

Magnetization and domain structure of bee FegNi;o/ Co (001) superlattices

R. Brucas, H. Hafermann, M. I. Katsnelson, I. L. Soroka, O. Eriksson, and B. Hjorvarsson
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FIG. 2. The MFM images of the 420 nm thick FegNi;g/Co superlattice at different externally applied in-plane magnetic fields:
(a)—virgin (nonmagnetized) state; (b), (c). (d)—increasing field 8.3, 30, and 50 mT; (e), (f). (g) —decreasing field 50, 30, 8.3 mT: (h)—in

remanent state.



Magnetic patterns 11

Europhys. Lett., 73 (1), pp. 104-109 (2006)
DOI: 10.1209/epl/i2005-10367-8

Topological defects, pattern evolution, and hysteresis
in thin magnetic films

P. A. PRUDKOVSKII!, A. N. RuBTsov! and M. I. KATSNELSON?
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Competition of exchange interactions (want homogeneous
ferromagnetic state) and magnetic dipole-dipole interations
(want total magnetization equal to zero)



Magnetic patterns 111

Classical Monte Carlo simulations

Fig. 2 — Snapshots of the stripe-domain system with the two-component order parameter at several
points of the hysteresis loop for 3 = 1. The magnetic field is h = 0, h = 0.3, and h = 0.6, from left
to right. The inset shows the color legend for the orientation of local magnetization.

We know the Hamiltonian and it is not very complicated

How to describe patterns and how to explain patterns?



Competing interactions and self-induced spin
olasses

Special class of patterns: “chaotic” patterns

Hypothesis: a system wants to be
modulated but cannot decide in which

PHYSICAL REVIEW B 69, 0064411 (2004) . .
direction
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where mg is a two-dimensional Fourier component of the
magnetization density. At the same time, the exchange en-
ergy can be written as

1
Eexcn=7 afE gzmqm_q._ (14)
= q

so there is a finite value of the wave vector g=¢* found
from the condition
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Self-induced spin glasses 11

PRL 117, 137201 (2016) PHYSICAL REVIEW LETTERS 23 SEPTEMBER 2016

PHYSICAL REVIEW B 93, 054410 (2016)

Self-Induced Glassiness and Pattern Formation in Spin Systems Subject

Stripe glasses in ferromagnetic thin films to Long-Range Interactions

Alessandro Principi* and Mikhail I. Katsnelson Alessandro Principi and Mikhail 1. Katsnelson

Development of idea of stripe glass, J. Schmalian and P. G. Wolynes, PRL 2000

Glass: a system with an energy landscape characterizing by
infinitely many local minima, with a broad distribution of barriets,
relaxation at “any” time scale and aging (at thermal cycling you
never go back to exactly the same state)
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Picture from P. Charbonneau et al,

DOI: 10.1038/ncomms4725

Intermediate state between

equilibrium and non-equilibrium,

o= ( opportunity for history and
% % memory (“stamp collection”)
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Selt-induced spin glasses 111
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q-dependence of normal
and anomalous (“glassy”, non-
ergodic spin-spin correlators



“xperimental observation of self-induced spin

olass state: elemental Nd

Self-induced spin glass state in elemental . .
and crystalline neodymium Spin-polarized STM

Umut Kamber, Anders Bergman, Andreas Eich, Diana lusan, Manuel Steinbrecher, exper lment) Radboud
Nadine Hauptmann, Lars Nordstrom, Mikhail I. Katsnelson, Daniel Wegner®, o .
Olle Eriksson, Alexander A. Khajetoorians* Unlver Slty

Science 368, 966 (2020)
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Q-pockets
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Spin-Q glass. (Left) Real-space magnetization image with spin-polarized scanning tunneling microscopy

at T = 1.3 K of thick films of Nd(0O001). The surface shows multi-Q states but no long-range order.

(Right) Sketch of spin-Q glass in both real and reciprocal spaces, with color illustrating the distribution

of Q states in real space derived from flat pockets in Q-space. (Bottom) Calculated autocorrelation function

for Nd with increasing waiting time (t,,) illustrating aging behavior.




Magnetic structure: local correlations
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The most important observation: aging. At thermocycling (or

cyling magnetic field) the magnetic state is not exactly reproduced




Ab initio: magnetic interactions in bulk Nd

Method: magnetic force theorem (Lichtenstein, Katsnelson, Antropov, Gubanov
JMMM 1987)
Calculations: Uppsala team (Olle Eriksson group)
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* Dhcp structure drives competing AFM interactions
* Frustrated magnetism 13



ADb initio bulk Nd: energy landscape

* £(Q) landscape features flat valleys along high
symmetry directions

See A. Principi, M.I. Katsnelson, PRB/PRL 14
(2016)/(2017) 6/27/2022
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Spin-glass state in Nd: spin dynamics

Atomistic spin dynamics
simulations
w— 1,=0.01 ps
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Autocorrelation function C(t,,, t) = (m;(t +t,,) -m;(¢t,,)) fordhcpNdat T=1K

Autocorrelation, C(t +t,t )
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To compare: the same for prototype
disordered spin-glass Cu-Mn

B. Skubic et al, PRB 79, 024411 (2009)



Order-from-disorder in Nd

Spin-glass state at low temperatures and magnetically ordered
state at temperature increase

Thermally-induced magnetic order from glassiness in elemental

neodymium arXiv:2109.04815

Benjamin Verlhac', Lorena Niggli', Anders Bergman?, Umut Kamber', Andrey Bagrov'?2, Diana lusan?,

Lars Nordstrom?2, Mikhail |. Katsnelson', Daniel Wegner', Olle Eriksson?2, Alexander A.

Khajetoorians'”
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Experimental data and their analysis Simulations


https://arxiv.org/abs/2109.04815

Changing the shape of the energy landscape

Parameters (e.g. temperature, magnetic field) can change landscape from
ordered type (with a few distinguished minima) to glassy like

Atom-by-atom construction of attractors in a tunable finite size spin
array

A Kolmus', M IKatsnelson” @, A A Khajetoorians’® and H ] Kappen'

New J. Phys. 22 (2020) 023038

Extremely simple system
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simple ordered state, MW —

In between (“multiwell state™)



Frustrations and complexity: Quantum case

Generalization properties of neural network | (2020)11:1593
approximations to frustrated magnet ground states

Tom Westerhouﬂm, Nikita Astrakhantsev2'3'4m, Konstantin S. Tikhonov 5'6'7M, Mikhail I. Katsnelson'® &

Andrey A. Bagroy'%°®

How to find true ground state of the quantum system?

In general, a very complicated problem (difficult to solve even for
quantum computer!)

Idea: use of variational approach and train neural network to find
“the best” trial function (G. Carleo and M. Troyer, Science 355, 602 (2017))

K K
Was) = D _wilS) =D _silwillS))
i=1 i=1
Generalization problem: to train NN for relatively small basis (K

much smaller than total dim. of quantum space) and find good
approximation to the true ground state



Frustrations and complexity: Quantum case 11

Quantum $=1/2 Hamiltonian H=],) 6,06,+], Y 6,06,
NN and NNN interactions (ab) ({aib))

Fig. 1 Lattices considered in this work. We studied three frustrated antiferromagnetic Heisenberg models: a next-nearest neighbor J,—J/> model on square
lattice; b anisotropic nearest-neighbor model on triangular lattice; ¢ spatially anisotropic Kagome lattice. In all cases J; = O corresponds to the absence of
frustration.

. . . . . 24 6
24 spins, dimensionality of Hilbert space d = C{; >~ 2.7 - 10

Still possible to calculate ground state exactly
Training for K =0.01 d (small trial set)



Frustrations and complexity: Quantum case 111

Kagome lattice

Square lattice Triangular lattice
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Fig. 2 Optimization results for 24-site clusters obtained with supervised learning and stochastic reconfiguration. Subfigures a-c were obtained using
supervised learning of the sign structure. Overlap of the variational wave function with the exact ground state is shown as function of J;/J; for square a,
triangular b, and Kagome c lattices. Overlap was computed on the test dataset (not included into training and validation datasets). Note that generalization
is poor in the frustrated regions (which are shaded on the plots). 1-layer dense, 2-layer dense, and convolutional neural network (CNN) architectures are
described in Supplementary Mote 1. Subfigures d-f show overlap between the variational wave function optimized using Stochastic Reconfiguration and the
exact ground state for square, triangular, and Kagome lattices, respectively. Variational wave function was represented by two two-layer dense networks. A
correlation between generalization quality and accuracy of the SR method is evident. On this figure, as well as on all the subsequent ones (both in the main
text and Supplementary Notes 1 and 2), error bars represent standard error (SE) obtained by repeating simulations multiple times.



Frustrations and complexity: Quantum case IV
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Fig. 4 Generalization of signs and amplitudes. \We compare generalization
quality as measured by overlap for learning the sign structure (red circles)
and amplitude structure (green squares) for 24-site Kagome lattice for
two-layer dense architecture. Note that both curves decrease in the
frustrated region, but the sign structure is much harder to learn.

It is sign structure

which is difficult to

learn in frustrated
case!!!

Relation to sign
problem in QMC?!

"Somehow it seems to fill my head with ideas —only I don't exactly know
what they are!” (Through the Looking-Glass, and What Alice Found There)



To summarize this part

In general, connection between glassiness and complexity
is a mainstream today — but details are important

—

Giorgio Parisi, Nobel Prize in physics 2021
"for the discovery of the interplay of disorder
and fluctuations in physical systems from atomic
to planetary scales."

Actually, disorder is not needed, frustrations are enough
(self-induced spin glass state in Nd)

Whether you can observe a thing or not
depends on the theory which you use.
It is theory which decides what can be observed
(A. Einstein)



Analogies with biological evolution?

Thermodynamics of evolution and the origin of life

Vitaly Vanchurin®®, Yuri I. Wolf*@, Eugene V. Koonin®', and Mikhail I. Katsnelson®'

Table 1. Corresponding quantities in thermodynamics, machine learning, and evolutionary biology
Thermodynamics Machine learning Evolutionary biology
X Microscopic physical degrees of Variables describing training Variables describing environment
freedom dataset (nontrainable
variables)
q Generalized coordinates (e.g., Weight matrix and bias vector Trainable variables (genotype,
volume) (trainable variables) phenotype)
Hix,q) Energy Loss function Additive fitness,
H(x,q) = —Tlogf(q)
S(q) Entropy of physical system Entropy of nontrainable variables Entropy of biological system
U(q) Internal energy Average loss function Average additive fitness
Z(T,q) Partition function Partition function Macroscopic fitness
F(T.q) Helmholtz free energy Free energy Adaptive potential (macroscopic
additive fitness)
Q(T, 1) Grand potential, Q, (.7, .#) Grand potential Grand potential, Qu (T, i)
Toro Physical temperature, .7 Temperature Evolutionary temperature, T
uor Chemical potential, .# Absent in conventional machine Evolutionary potential, u
learning
Ne or N Number of molecules, N Number of neurons, N Effective population size, Ne
K Absent in conventional physics Number of trainable variables Number of adaptable variables

Energy landscape in physics is

similar to fitness landscape in biology



Analogies with biological evolution 11

Can the change of e.g. biological temperature switch fitness landscape
from a few well-defined peaks to a glassy-like with many directions of
possible evolution?

Australian Journal of Zoology
http://dx.doi.org/10.1071/2013052

Explaining the Cambrian

“'F,Xplosi(m” of Animals The evoluti.op of morphogenetic fitness landscapes:
conceptualising the interplay between the developmental

Charles R. Marshall and ecological drivers of morphological innovation

Annu. Rev. Earth Planet. Sci.

2006. 34:355-84 Charles R. Marshall

Cambrian Exposion as an analog of magnetic phase transitions
in neodymium?!

Well... for me (as a physicist) it is a good place to stop

THANK YOU




