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Cognitive transitions: complexity & Evolution

minds?

J
intelligence arises in evolution?

Is language a pre-condition or a consequence!
Is consciousness an emergent property?
s it possible to build an artificial mind?

How can we measure consciousness?

Why are humans so different (from other species)?



Contingency, constraints and universals

Geobios, mémoire spécial n° 12 p. 21-57, 19 fig., 2 pl. Lyon, 1989

THE LOGIC OF MONSTERS :
EVIDENCE FOR INTERNAL CONSTRAINT IN DEVELOPMENT AND EVOLUTION

Pere ALBERCH*

ABSTRACT

One of the most outstanding properties of natu-
ral diversity is its discreteness and order. Species can
be identified and classified because of this property.
There are two philosophical approaches to interpret the
orderliness of natural systems. These two conceptual
positions, wich I refer to as ‘‘externalist’’ and ‘inter-
nalist’’, prescribe drastically distinct methodological
approaches. Classical neo-Darwinism falls within the
‘‘externalist’’ tradition, with its emphasis in natural
selection as the main ordering agent in evolution, this
approach basically argues that the properties of the
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Predicting evolution i byt

Michael Lissig™, Ville Mustonen®* and Aleksandra M. Walczak®* J

The face of evolutionary biology is changing: from reconstructing and analysing the past to predicting future evolutionary pro-

Recent developments include prediction of reproducible patterns in parallel evolution experiments, forecasting the i ——
future of individual populations using data from their past, and controlled manipulation of evolutionary dynamics. Here we — . —~—ca et
undertake a synthesis of central concepts for evolutionary predictions, based on examples of microbial and viral systems, can- o — -
cer cell populations, and immune receptor repertoires. These systems have strikingly similar evolutionary dynamics driven o
by the competition of clades within a population. These dynamics are the basis for models that predict the evolution of clade e - 5
frequencies, as well as broad genetic and phenotypic changes. Moreover, there are strong links between prediction and control, = -
which are important for interventions such as vaccine or therapy design. All of these are key elements of what may become a
predictive theory of evolution. |
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Synthetic transitions: towards a new
synthesis

Ricard Solé!23

1ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
2Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, 08003 Barcelona, Spain
3santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

The evolution of life in our biosphere has been marked by several major inno-
vations. Such major complexity shifts include the origin of cells, genetic codes
or multicellularity to the emergence of non-genetic information, language or
even consciousness. Understanding the nature and conditions for their rise
and success is a major challenge for evolutionary biology. Along with data
analysis, phylogenetic studies and dedicated experimental work, theoretical
and computational studies are an essential part of this exploration. With the
rise of synthetic biology, evolutionary robotics, artificial life and advanced
simulations, novel perspectives to these problems have led to a rather interest-
ing scenario, where not only the major transitions can be studied or even
reproduced, but even new ones might be potentially identified. In both
cases, transitions can be understood in terms of phase transitions, as defined
in physics. Such mapping (if correct) would help in defining a general frame-
work to establish a theory of major transitions, both natural and artificial. Here,
we review some advances made at the crossroads between statistical physics,
artificial life, synthetic biology and evolutionary robotics.

This article is part of the themed issue ‘The major synthetic evolutionary
transitions’.

1. Introduction: synthetic transitions

Looking backward to the unfolding of life on our planet, it is possible to identify
several major qualitative changes that deeply marked evolutionary history. They
have been labelled as the major evolutionary transitions (METs) owing to the fun-
damentally unique nature of the changes involved [1]. The emergence of life, the
genetic code, complex cells, multicellular organisms and language are some of
the best-known examples. They all involve a novel class of organization with
high-order properties not reducible to the properties of the lower-scale units.
The list of METs differs among authors [1-7], and in this paper we address a
revised list of major transitions (MTs) incorporating different proposals. A first
classification of METs would include (i) a loss of replicative potential by the
units once belonging to a higher-order entity, (ii) a specialization of different
units in different tasks, which requires a nonlinear mapping between genotype
and phenotype, and (iii) changes in the ways information is processed and
stored. But more importantly, we want to consider METs under the light of the
theoretical, experimental and engineering perspectives involving the modelling,
synthesis and imitation of living systems. For example, we can create a new multi-
cellular system by engineering new cell—cell signals on single cells. Similarly, a
proto-grammar can emerge in a group of interacting, evolvable robots. These
are synthetic transitions that are not necessarily related to standard evolutionary
paths, but they do involve ways to generate major innovations starting from sim-
pler systems. We will use a general term to label this broad class of non-natural
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Cognitive networks: what is the space of the possible?
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Solid, neural

Liquid brains, solid brains: how distributed cognitive
architectures process information
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Emergence of neurons, neural agents and brains

Available online at www.sciencedirect.com

@ Journal of
SCIENCE DIRECT® .

Theoretical
) Biology
ELSEVIER Journal of Theoretical Biology 239 (2006) 236246

www.elsevier.com/locate/yjtbi

The evolution of information in the major transitions

Eva Jablonka®*, Marion J. Lamb®

*The Cohn Institute for the History and Philosophy of Science and Ideas, Tel-Aviv University, Tel Aviv 69978, Israel
P11 Fernwood Clarence Road, London N22 8QE, UK

Received 11 February 2005; received in revised form 25 May 20035; accepted 23 July 2005
Available online 19 October 2005

7...with a high level of internal integration
and the ability to make rapid adaptive re-
sponses. However, the emergence of the neu-
ral individual meant more than a change in
the nature and speed of adaptation. Neu-
ral processing led to behaviour based on sen-
sory perception, and this in turn led to a
form of communication between individuals
that did not require contact or the trans-
mission of physical material from one to the
other. This mode of information transmission
had interesting consequences, one of which
was the ability of animals to learn from oth-
ers through perceiving their behaviour or the
outcomes of their behaviour, 1.e. i1t led to so-
cial learning.

Jablonka and Lamb (2006 )



Why brains?
What kinds of brains?
What are the constrains?

Case studies

Building synthetic cognition



The moving hypothesis: brains as prediction machines

The moving hypothesis posits that active exploration of
an organism’s spatial environment was a key step in
the evolutionary trajectory that produced brains

R. Llinas, 1987



What is intelligence: a space of possibilities?
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Green plants as intelligent organisms

Anthony Trewavas

Bacterial observations: a rudimentary
form of intelligence?

Klaas J. Hellingwerf

Neuws Achtengmache 185 NL-0 S WV Amscendas, The Nether s

Institute of Molecular Plant Science, Kings Buildings, University of Edinburgh, Edinburgh, UK EH9 3JH

Genome segquending has revealed that signal teaes due-

Intelligent behaviour, even in humans, is an aspect of
complex adaptive behaviour that provides a capacity for
problem solving. This article assesses whether plants
have a capacity to solve problems and, therefore, could
be classified as intelligent organisms. The complex
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Warwick [1], Frank Vertosick [2], and Jonathan Schull [7].
It is the kind of behaviour that is crucial. Warwick, a
cyberneticist and artificial intelligence (Al) investigator,
states that ‘...the success of a species depends on it
performing well in its own particular environment and
intelligence plays a critical part in its success...,
emphasizing the relationship of intelligence to fitness
[1]. He refers to intelligence as the ‘...capacity for problem
solving...” and indicates that intelligence within any
species must be described within the capabilities of the
species under examination — otherwise it is subjective.
Species, immune systems, social insects, bacteria, single

Swarm Intelligence
From Natural to Artificial Systems

Eric Bonabeau
Marco Dorigo
Guy Theraulaz




Defining and measuring intelligence

DOl 1010071 103.0070010x “Intelligence: the collection of
sophisticated cognitive abilities,
such as problem solving, complex
Universal Intelligence: A Definition of Machine . .y
Intelligence social Cognlthn, and future
planning.”

Shane Legg + Marcus Hutter

P. Amodio et al. TREE 2019

Received: 22 September 2006/ Accepted: 28 August 2007/ Published online: 10 November 2007
© Springer Science+Business Media B.V. 2007

Abstract A fundamental problem in artificial intelligence is that nobody really

knows what intelligence is. The problem is especially acute when we need to

consider artificial systems which are significantly different to humans. In this paper

we approach this problem in the following way: we take a number of well known

informal definitions of human intelligence that have been given by experts, and

extract their essential features. These are then mathematically farmalicad ta nraduca .
a general measure of intelligence for arbitrary machines.

equation formally captures the concept of machine intellig

reasonable sense. We then show how this formal definition is |

universal optimal learning agents. Finally, we survey the
definitions of intelligence that have been proposed for mach —_— K (//l/) 7'C

l . ‘ /
Keywords AIXI - Complexity theory - Intelligence - Theol n s 2 °

Turing test - Intelligence tests - Measures - Definitions u
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How can we model cognition?
Classical problem: “solid” neural networks



“Standard” brains / neural networks (solid brains)
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The Human Connectome: A Structural
Description of the Human Brain

Olaf Sporns*, Giulio Tononi, Rolf Kotter

ABSTRACT Experimental approaches to human cognition have been

sigt ntly enhanced by the arrival of functional
he connection matrix of the human brain (the human neuroim I 1 set of techniques that can be applied to
“connectome”) represents an indispensable study : re of cognitive functions, with ever-

foundation for basic and applied neurobiological increasing spatial and temporal resolution. But the

research. However, the network of anatomical connections mechanistic interpretation of neuroimag data is limited,



Neural and genetic network model(s)

BULLETIN OF
MATHEMATICAL BIOPHYSICS
VOLUME 5, 1943

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. MCCULLOCH AND WALTER PITTS

FroM THE UNIVERSITY OF ILLINOIS, COLLEGE OF MEDICINE,
DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INSTITUTE,
AND THE UNIVERSITY OF CHICAGO

Because of the “all-or-none” character of nervous activity, neural
events and the relations among them can be treated by means of propo-
sitional logic. It is found that the behavior of every net can be described
in these terms, with the addition of more complicated logical means for
nets containing circles; and that for any logical expression satisfying
certain conditions, one can find a net behaving in the fashion it describes.
It is shown that many particular choices among possible neurophysiologi-
cal assumptions are equivalent, in the sense that for every net behav-
ing under one assumption, there exists another net which behaves un-
der the other and gives the same results, although perhaps not in the
same time. Various applications of the calculus are discussed.

Proc. Natl. Acad. Sci. USA
Vol. 81, pp. 3088-3092, May 1984
Biophysics

Neurons with graded response have collective computational
properties like those of two-state neurons
(associative memory/neural network/stability/action potentials)
J. J. HOPFIELD
Divisions of Chemistry and Biology, California Institute of Technology, Pasadena, CA 91125; and Bell Laboratories, Murray Hill, NJ 07974

Contributed by J. J. Hopfield, February 13, 1984

ABSTRACT A model for a large network of “neurons”
with a graded response (or sigmoid input—output relation) is
studied. This deterministic system has collective properties in
very close correspondence with the earlier stochastic model
based on McCulloch-Pitts neurons. The content-addressable
memory and other emergent collective properties of the origi-
nal model also are present in the graded response model. The
idea that such collective properties are used in biological sys-
tems is given added credence by the continued prese|
properties for more nearly biological “neurons.”
analog electrical circuits of the kind described wil
function. The collective states of the two models hay
correspondence. The original model will continue t:
for simulati b ion to graded re:
tems is established. Equations that include the effec

of the original model (1) but built of operational amplifiers
and resistors will function.

Form of the Original Model
The original model used two-state threshold “neurons” that

followed a stochastic algorithm. Each model neuron i had
two states, characterized by the output V; of tl_le neuron hgxy-

J. Theoret. Biol. (1969) 22, 437-467

potentials in the graded response system are also d

Metabolic Stability and Epigenesis in
Randomly Constructed Genetic Nets

S. A. KAUFFMAN

Department of Anatomy, University of California Medical School,
San Francisco, California, U.S.A.

and

Research Laboratory of Electronics, Massachusetts Institute of Technology,
Cambridge, Massachusetts, U.S.A.T

(Received 19 March 1968, and in revised form 8 July 1968)

“The world is either the effect of cause or
chance. If the latter, it is a world for all
that, that is to say, it is a regular and
beautiful structure.”

Marcus Aurelius

Proto-organisms probably were randomly aggregated nets of chemical
reactions. The hypothesis that contemporary organisms are also randomly




Attractor neural networks

Network topology, connectivity matrix
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Formal Hebb’s rule implementation

Synaptic weights at the end of the retrieval process:
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Is the brain operating at the edge of chaos?
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Neuronal avalanches are critical

Acute slice in vitro Young rat in vivo
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Emergent complex neural dynamics

Dante R. Chialvo"?*

A large repertoire of spatiotemporal activity patterns in the brain is the basis for adaptive behaviour. Understanding the
mechanism by whlch the brain's hundred bllllon neurons and hundred trllllon synapses manage to produce such a range of



What happens if agents can move?
What kind of attractors?
What kind of (collective) dynamical states?






The collective mind: liquid + solid
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Emergence of a super-structure with a two-way interaction loop



Fluid neural networks

PHILOSOPHICAL Statistical physics of liquid brains
TRANSACTIONS B

Jordi Pifiero’2 and Ricard Solé'23

royalsocietypublishing.org/journal/rstb
» v g.0r9/ 1|CREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003 Barcelona, Spain

2Institut de Biologia Evolutiva (CSIC-UPF), Psg Maritim Barceloneta, 37, 08003 Barcelona, Spain
35anta Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

'.) JP, 0000-0002-4183-3733; RS, 0000-0001-6974-1008

ReVIeW Updates. Liquid neural networks (or ‘liquid brains’) are a widespread class of cognitive
living networks characterized by a common feature: the agents (ants or
immune cells, for example) move in space. Thus, no fixed, long-term agent-
Statistical physics of liquid brains. agent connections are maintained, in contrast with standard neural systems.
Phil. Trans. R. Soc. B 374: 20180376. How is this class of systems capable of displaying cognitive abilities, from learn-
http://dx.doi.org/10.1098/rstb.2018.0376 ing to decision-making? In this paper, the collective dynamics, memory and

Cite this article: Pinero J, Solé R. 2019



Neural networks as models of cellular networks

REVIEW ARTICLE

Protein molecules as computational
elements in living cells

Dennis Bray

Many proteins in living cells appear to have as their primary function the transfer and processing
of information, rather than the chemical transformation of metabolic intermediates or the
building of cellular structures. Such proteins are functionally linked through allosteric or other
mechanisms into biochemical ‘circuits’ that perform a variety of simple computational tasks
including amplification, integration and information storage.

Il ARTICLE

Circuit Simulation of Genetic Networks
Harley H. McAdams and Lucy Shapiro
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Single cells also move and search: a cellular brain?




Physarum machines: shortest path with brainless agents
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If ant colonies are like liquid brains,
what kind of attractors are there?

What are the constraints to cognition?



Ant colonies as liquid cognitive networks

Sk € {0,1}
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Each individual is a “neural agent”



Ant colonies as liquid cognitive networks
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The attractor is defined in terms of a population vector: is this a general result?



Colony attractors are highly degenerate. What about brain of brains?

PHYSICAL REVIEW E VOLUME 55, NUMBER 3 MARCH 1997

Collective-induced computation

Jordi Delgado %7 and Ricard V. Solé??
' Departament de Llenguatges i Sistemes Informatics, Universitat Politecnica de Catalunya, Pau Gargallo 5, 08028 Barcelona, Spain
2Complex Systems Research Group, Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya,
Sor Eulalia d’Anzizu s/n, Campus Nord, Modul B4, 08034 Barcelona, Spain
3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501
(Received 26 August 1996)

Many natural systems, such as social insects, perform complex computations collectively. In these groups,
large numbers of individuals communicate in a local way and send information to its nearest neighbors.
Interestingly, a general observation of these societies reveals that the cognitive capabilities of individuals are
fairly limited, suggesting that the complex dynamics observed inside the collective is induced by the interac-
tions among elements and is not defined at the individual level. In this paper we use globally coupled maps, as
a generic theoretical model of a distributed system, and Crutchfield’s statistical complexity, as our theoretical
definition of complexity, to study the relation between the complexity the collective is able to induce on the
individual and the complexity of the latter. It is conjectured that the observed patterns could be a generic
property of complex dynamical nonlinear networks. [S1063-651X(97)00203-1]

PACS number(s): 0545.+b

Evolution, 56(3), 2002, pp. 441-452

A COMPLEXITY DRAIN ON CELLS IN THE EVOLUTION OF MULTICELLULARITY

DANIEL W. MCSHEA
Department of Biology, Duke University, Durham, North Carolina 27708-0338
E-mail: dmcshea@duke .edu

Abstract.—A hypothesis has been advanced recently predicting that, in evolution, as higher-level entities arise from
associations of lower-level organisms, and as these entities acquire the ability to feed, reproduce, defend themselves,
and so on, the lower-level organisms will tend to lose much of their internal complexity (McShea 2001a). In other
words, in hierarchical transitions, there is a drain on numbers of part types at the lower level. One possible rationale
is that the transfer of functional demands to the higher level renders many part types at the lower level useless, and
thus their loss in evolution is favored by selection for economy. Here, a test is conducted at the cell level, comparing
numbers of part types in free-living eukaryotic cells (protists) and the cells of metazoans and land plants. Differences
are significant and consistent with the hypothesis, suggesting that tests at other hierarchical levels may be worthwhile.

Key words—Complexity, evolutionary trends, hierarchy, parts.

Received June 18, 2001. Accepted October 15, 2001.




Is criticality relevant to liquid cognition too?



Criticality in swarms: collective behavior at criticality

J Stat Phys (2011) 144:268-302
DOI 10.1007/510955-011-0229.4

2

Are Biological Systems Poised at Criticality

Thierry Mora - William Bialek

Reccived: 12 December 2010 / Acocpted: 12 May 2011 / Published online: 2 June 2011
© Springer Scicnoo+Business Media, LLC 2011

Abstract Many of life’s most fascinating phenomena emerge from interactions among
many elements—many amino acids determine the structure of a single protein, many genes
determine the fate of a cell, many neurons are involved in shaping our thoughts and memo-
ries. Physicists have long hoped that these collective behaviors could be described using the
ideas and methods of statistical mechanics. In the past few years, new, larger scale experi-
ments have made it possible to construct statistical mechanics models of biological systems
directly from real data. We review the surprising successes of this “inverse™ approach, using
examples from families of proteins, networks of neurons, and flocks of birds. Remarkably,
in all these cases the models that emerge from the data are poised near a very special point in
their parameter space—a critical point. This suggests there may be some deeper theoretical
principle behind the behavior of these diverse systems.

Keywords Critical point - Maximum entropy model - Biological networks - Proteins -
Collective behavior

Statistical mechanics for natural flocks of birds

Bialek et al, PNAS 2012

http://www.xavibou.com




Collective synchronisation of non-periodic agents

J. theor. Biol. (1993) 161, 343-357

Oscillations and Chaos in Ant Societies

RIcARD V. SoLET, OctAavio MIRAMONTES] AND Brian C.
Goopwini

Y Complex Systems Research Group, Departament de Fisica i Enginyeria
Nuclear, Universitat Politécnica de Catalunya, Pau Gargallo 5, 08028
Barcelona, Spain and 1 Department of Biology, Open University, Faculty of
Sciences, Milton Keynes, Walton Hall MK7 644, UK.

(Received on 11 February 1992, Accepted in revised form on 11 July 1992)

A neural network-like model of collective short-time oscillations in ant colonies is
presented. Such behaviour has been recently observed in some experimental situ-
ations. Each individual is here considered as a cellular automaton able both to move
into a given available space and to interact with other (nearest) automata. As a
consequence of non-linear interactions, the observed oscillations are an emergent
property of the colony as a whole. Time series and Fourier spectrum are in agreement
with real data, The internal dynamics of each individual is modelled either by random
process or deterministic chaos.
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At criticality
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Information at the edge of chaos in fluid neural networks
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Collective synchronisation: making synthetic ants
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Criticality in cells

Gene expression dynamics in the macrophage

exhibit criticality

Matti Nykter*?, Nathan D. Pricet, Maximino Aldana*, Stephen A. Ramsey", Stuart A. Kauffman$, Leroy E. Hood'T,

Olli Yli-Harja*, and llya Shmulevich*T

*|nstitute of Signal Processing, Tampere University of Technology, 33101 Tampere, Finland; fInstitute for Systems Biology, Seattle, WA 98103; *Center of
Physical Sciences, National Autonomous University of Mexico, C.P. 62210, Cuernavaca, Morelos, Mexico; and SInstitute for Biocomplexity and Informatics,

University of Calgary, Calgary, AB, Canada T2N 1NF

Contributed by Leroy E. Hood, December 14, 2007 (sent for review October 20, 2007)

Cells are dynamical systems of biomolecular interactions that
process information from their environment to mount diverse yet
specific responses. A key property of many self-organized systems
is that of criticality: a state of a system in which, on average,
perturbations are neither dampened nor amplified, but are prop-
agated over long temporal or spatial scales. Criticality enables the
coordination of complex macroscopic behaviors that strike an
optimal balance between stability and adaptability. It has long
been hypothesized that biological systems are critical. Here, we
address this hypothesis experimentally for system-wide gene ex-
pression dynamics in the macrophage. To this end, we have
developed a method, based on algorithmic information theory, to
assess macrophage criticality, and we have validated the method
on networks with known properties. Using global gene expression
data from macrophages stimulated with a variety of Toll-like
receptor agonists, we found that macrophage dynan
critical, providing the most compelling evidence t¢
general principle of dynamics in biological systems

exposure to certain stimuli. Therein lies a delicate balance
between stability and adaptability. Too much stability—a char-
acteristic of ordered behavior—and the system cannot respond
to changes, rendering it inflexible. Too much sensitivity—a
feature of chaotic behavior—and the system loses its ability to
maintain one or more stable steady states necessary for
executing orderly cellular functions.

Such exquisite molecular decision-making is exemplified by
the macrophage, a cornerstone cell type of the innate immune
system and a key regulator of the inflammatory response.
Batteries of cell surface receptors, such as the Toll-like receptors
(TLRs), recognize different pathogen-associated molecular pat-
terns and propagate that information through intracellular mo-
lecular networks (15). By combining the information associated
with each of these molecular patterns, the macrophage triggers
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Engineering synthetic criticality in cells
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Engineering synthetic criticality in cells
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Synthetic search patterns?

Lévy flight search patterns of
wandering albatrosses

1 G. M. Viswanathan*, V. Afanasyevf, S. V. Buldyrev*,
E. J. MurphyT, P. A. Princef & H. E. Stanley*

* Center for Polymer Studies and Department of Physics, Boston University,
Boston, Massachusetts 02215, USA

FM T British Antarctic Survey, Natural Environment Research Council,

High Cross, Madingley Road, Cambridge CB3 OET, UK

C Livy flights are a special class of random walks whose step
FM lengths are not constant but rather are chosen from a probability
b Q distribution with a power-law tail. Realizations of Lévy flights in
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What about plants?



Plant intelligence”? No movement, no cognition?

Animals or plants? Evolutionary dynamics of sessile versus

mobile cognitive agents in noisy environments

Salva Duran-Nebreda'* and Ricard Solé"3f
! Institut de Biologia Evolutiva (CSIC-UPF),
Psg Maritim Barceloneta, 37, 08003 Barcelona, Spain
2JCREA-Complex Systems Lab, Universitat Pompeu Fabra, 08008 Barcelona, Spain and
3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, USA

Abstract
The emergence of complex cognition has been often attributed to the potential for
movement. The so called moving hypothesis is grounded in the precondition of move-
ment as a key requirement for evolved neural systems. Cognitive agents capable of
moving would be able to exploit available resources whose quantity would fluctuate
in unpredictable ways. By contrast, a major art of the multicelular biosphere is in-
stead represented by individuals exploiting available resources that make movement

unnecessary. Are these two main solutions to the problem of evolving cognition? (ex-
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How to define a cognition space?
Can it be described as a phase space?



A morphospace of embodied cognition
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A morphospace of embodied cognition
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A morphospace of embodied cognition
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A morphospace of embodied cognition

a Neural systems
Immune system
insect colonies

Rl

passive organs

reactive organs
Red blood cells

Q

standard organs

>
=
<
Ll
o unexplored
g morphology space
O
<

0) id
% Q rganoids
E Physarum
O 5 a
g Microbiome J o
L ' >
@) : Spher0|d§ *\,d
5 : “\Q\f"
Chemostat ' . ' Q{(/c,O Very diverse
- , L
printed organs 5 @\ Liquid
LIQUID SOLID © Learning
PHYSICAL STATE Memory

Pattern matching

Ollé-Vila, A. et al. (2016). A morphospace for synthetic organs and organoids: the possible and the actual. Integrative Biology, 8, 485-503.



A morphospace of embodied cognition
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A morphospace of embodied cognition
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A morphospace of embodied cognition
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Solid artificial constructs: do they “explain” cognition?
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Evolution of Brains and Computers: The Roads Not Taken
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Abstract: When computers started to become a dominant part of technology around the 1950s, funda-
mental questions about reliable designs and robustness were of great relevance. Their development
gave rise to the exploration of new questions, such as what made brains reliable (since neurons can
die) and how computers could get inspiration from neural systems. In parallel, the first artificial
neural networks came to life. Since then, the comparative view between brains and computers has
been developed in new, sometimes unexpected directions. With the rise of deep learning and the
development of connectomics, an evolutionary look at how both hardware and neural complexity
have evolved or designed is required. In this paper, we argue that important similarities have resulted
both from convergent evolution (the inevitable outcome of architectural constraints) and inspiration
of hardware and software principles guided by toy pictures of neurobiology. Moreover, dissimilar-
ities and gaps originate from the lack of major innovations that have paved the way to biological
computing (including brains) that are completely absent within the artificial domain. As it occurs
within synthetic biocomputation, we can also ask whether alternative minds can emerge from A.L

check for designs. Here, we take an evolutionary view of the problem and discuss the remarkable convergences

updates

Citation: Solé, R.; Seoane, LE. between living and artificial designs and what are the pre-conditions to achieve artificial intelligence.

Evolution of Brains and Computers:

The Roads Not Taken. Entropy 2022 Keywords: evolution; brains; deep learning; embodiment; neural networks; artificial intelligence;
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A(nother) morphospace of embodied cognition
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