Harnessing Complexity
through through Harnessing Complexity
through
Evolutionary Dimensional Reduction essing Complexity
through
Dimensional Reduction
Kunihiko Kaneko

Universal Biology Institute, U. Tokyo
 \rightarrow \rightarrow $\begin{aligned} &\text{Kunihiko Kaneko} \\ &\text{inverseal Biology Institute, U. Tc} \\ &\longrightarrow \\ &\text{Niels Bohr Institute} \end{aligned}$

(My) standpoint in Universal Biology Life System consists of diverse components, maintains itself and can continue to produce itself Guiding Principle-- Macro-Micro Consistency: micro – diverse components (high-dimensional) Thousands of chemical speciesmacro – unit to sustain/ reproduce as a whole (low-dimensional description?) molecule – cell, cell-tissue etc. Steady (growth) state An Introduction Micro-macro to Complex **Systems** Constraint from relationship and the side of macro to micro 2 Springer Complex-systems Universal statistical law[®] Biology

Consistency between hierarchical levels (+collapse)

Consistency between dynamics of different levels (1) Cell reproduction vs molecule replication \rightarrow universal statistical laws in gene expression **Consistency between dynamics of different levels
(1)Cell reproduction vs molecule replication** \rightarrow **
universal statistical laws in gene expression
(Furusawa et al, PRL 2003,2012, Biophysics 2006,KK etal, PRX2015)
(2)Adapta Consistency between dynamics of different levels

(1)Cell reproduction vs molecule replication** \rightarrow **

universal statistical laws in gene expression

(Furusawa et al, PRL 2003,2012, Biophysics 2006,KK etal, PRX2015)

(2)Ad Consistency between dynamics of dif
(1)Cell reproduction vs molecule replic
universal statistical laws in gene expression
(Furusawa et al, PRL 2003,2012, Biophysics 2006,KK eta
(2)Adaptation** \rightarrow **universal adaptation law** (3) Differentiation: Cell vs multicellularity \rightarrow (1) Cell reproduction vs molecule replication \rightarrow
universal statistical laws in gene expression
(Furusawa et al, PRL 2003,2012, Biophysics 2006, KK etal, PRX2015)
(2) Adaptation \rightarrow universal adaptation laws (Kashiwagi interaction \rightarrow differentiation, loss of pluripotency al, PRL 2003,2012, Biophysics 2006,KK etal, PRX2015)
 (KARA): Furusawa, KK Phys RevE2018)

The Serve 2018)

The Serve 2018

The Serve 2018

The Serve 2018

The Serve 2012
 (KK&Yomo 1997, Furusawa&KK,1998,Science 2012) (2) Adaptation \rightarrow universal adaptation laws (Kashiwagi et al

Plos One2005; Furusawa, KK Phys RevE2018)

(3) Differentiation: Cell vs multicellularity \rightarrow

Oscillatory dynamics => pluripotency + cell-cell

interaction Plos One2005; Furusawa, KK Phys RevE2018)

3) Differentiation: Cell vs multicellularity →

Dscillatory dynamics => pluripotency + cell-cell

interaction → differentiation, loss of pluripotency

(KK&Yomo 1997, Furusawa&KK (3) Differentiation: Cell vs multicellularity \rightarrow
Oscillatory dynamics => pluripotency + cell-cell
interaction \rightarrow differentiation, loss of pluripotency
(KK&Yomo 1997, Furusawa&KK,1998,Science 2012)
(4) Genetic vs phen

Robustness to noise \sim to robustness to genetic change, (PNAS03,PLosOne07,Furusawa,KK,Interface2015,PRE 2018) Part I: Consistency (with robustness) between molecule and cell levels : Part I: Consistency (with robustness) between
molecule and cell levels :
→ Evolutionary Dimensional Reduction in
phenotypic dynamics

phenotypic dynamics

 \rightarrow Law in Adaptation and Evolution

Response Theory

Part II: Evolutionary Fluctuation-Response Relationship Phenotypic dynamics

Presponse Theory

Part II: Evolutionary Fluctuation-Response

Pheno Variance by noise ∝that by mutation
 ∞ evolution speed

∝ evolution speed

Response Theory

Notation is directed (predictable),

Phenotypic Evolution is directed (predictable),

before genetic evolution before genetic evolution

-
- Basic Setup (Exp/Theory/Model)
• Phenotype=Abundances of each comp • Basic Setup (Exp/Theory/Model)
• Phenotype=Abundances of each component
(e.g., protein/mRNA) (~5000 dimensions) (e.g., protein/mRNA) (~5000 dimensions) • Basic Setup (Exp/Theory/Model)
• Phenotype=Abundances of each component
(e.g., protein/mRNA) (~5000 dimensions)
Genotype- DNA seq, or rule for dynamics:
Dynamics to shape Phenotype • Basic Setup (Exp/Theory/Model)

• Phenotype=Abundances of each compo

(e.g., protein/mRNA) (~5000 dimensions

Genotype- DNA seq, or rule for dynamics:

Dynamics to shape Ph

Geno-Pheno Mapping?

- * Model: (i)catalytic reaction network for growth
- (ii) Gene regulation net: (high-dim dynamics):
- * Theory: Low-dim constraint in high-dim states

Trivial(?) Law in Adaptation: Focus on
steady-growth cells \rightarrow universal constraint
all the components have to be roughly doubled
(for cell division) : steady-growth condition
Xi – log(concentration of component i) (i=1, Trivial(?) Law in Adaptation: Focus on steady-growth cells \rightarrow universal constraint all the components have to be roughly doubled e to be roughly doubled
y-growth condition
f component i) (i=1,,,M)
dimensional line
in species $\sim (0^2 \sim 10^4)$
E: Environment; δE; added Stress
 $F_i(\lbrace X_i^*(E) \rbrace, E) = \mu(E)$. (for cell division) : steady-growth condition \rightarrow (M-1) conditions \rightarrow 1-dimensional line M large: e.g., # of protein species \sim $(10^3 \sim 10^4)$ $d_i X_i/dt = F_i({X_i}) - \mu$ Stress E^b Linearization , "small" δE, δX、δμ Stress Eⁿ $\frac{\delta X_j(E)}{\delta X_j(E')} = \frac{\delta \mu(E)}{\delta \mu(E')}$ = indep't of j KK, Furusawa, Yomo, PhysRevX(2015) for given type of stress E (changing strength)

Concentration xi=Ni/V: $(dV/dt)/V= \mu$ (volume V) Temporal change of concentration x (Any reaction dynamics) ☑

$$
dx_i/dt = f_i(\{x_j\}) - \omega \text{dilution}
$$

Now, the stationary state is given by a fixed point condition

 $x_i^* = f_i(\{x_i^*\})/\mu$

for all i .

As a convenience, denote $X = log x$, and $f_i = x_i F_i$. Then,

 $dX_i/dt = F_i({X_i}) - \mu$

Response under different stress strength E

 $F_i({X_i^*(E)}, E) = \mu(E).$

Trivial so far

Put E Coli under different strength of stresses; Measure gene expressions (mRNA concentrations)

Non-trivial point: Emergent "Deep Linearity"

- (1) Large Linear Regime?
- (2) Validity across different environmental condition?
- --beyond just steady-growth system

achieved in an evolved system ?

Across Different types of stresses: Across Different types of stresses:

γi(a) depends on stress type a so correlation not

despived, but...

a depends on stress type a so correlation not

(c) $\frac{dS_{X_3(E)=\delta\mu(E)\times\sum E_{j}(1-\gamma_i)}{E_{X_3(E)=\delta\mu(E)\times\sum E_{j}(1-\gamma_i)}}$ derived, but… $\sum_{\substack{\text{S.} \text{S.} \text{S.} \text{S.} \text{C.} \text{C$ Still highly correlated $\frac{z}{2}$
 $\frac{1}{2}$
 $\frac{z}{2}$
 $\frac{1}{2}$
 $\frac{5x_i(e^{osmo})}{6x_i(e^{osmo})}$
 $\frac{1}{2}$ expression changes across different environmental conditions

Fig. 20

Better(?) confirmed in protein expression
changes across different environmental changes across different environmental conditions (based on the data by Heinemann) 20 different conditions on E Coli

• High-dimensional adaptation system (diversity) is
important for expanded liner regime and
applicability for diverse environmental changes important for expanded liner regime and applicability for diverse environmental changes

*emergence of 'collective' slow variable (Image) • High-dimensional adaptation system (diversity) is
important for expanded liner regime and
applicability for diverse environmental changes
* emergence of 'collective' slow variable (Image)
homeostatic core (major parts) change, self-consistent ; few genes absorb specific environmental stresses

 $env2$

Relevant for robustness of a high-dimensional state

Non-trivial point: Emergent "Deep Linearity"

- (1) Large Linear Regime?
- (2) Validity across different environmental condition?

--beyond just steady-growth system

achieved in an evolved system ?

Check by simulations of toy models with high-dim dynamical systems

Examine by Toy Cell Model with Catalytic Reaction **Network** (Cf. Furusawa,KK, PRL 2003, 2012)

k species of chemicals $\mathbf{x}_o \cdots \mathbf{x}_{k-1}$

number --- n_0 n_1 ... n_{k-1} **n** random catalytic reaction network with the path rate p

for the reaction $X_i+X_i->X_k+X_i$

□ Resource chemicals (<environment) are transported with the aid of a given catalyst, transporter

resource chemicals are thus transformed into impenetrable chemicals, transport / \cdot , Ma leading to the growth.

 \blacksquare N=Σn_i exceeds N_{max} (model 1)

Genotype: Network;

Fitness: e.g., growth rate

Evolution: Mutate reaction paths, and select those with higher fitness

Model (stochastic reactions)

dX1/dt ∝ X0X4; rate equation; Stochastic model here

Evolve Network to increase the growth rate under iven resource condition

resource concentrations $i=1,2,..,10$ e.g., $(e0,e0, ., e0)$

Env = λ (e1,e2,e3,..e10) + (1- λ) (e0,e0,..., e0)
Check the change in concentrations and growth rates against. $-1 < e1, e2, \ldots < 1$ (randomly chosen) Check the change in concentrations and growth rates against λ

Evolution shapes Global Proportionality across different environmental conditions

KK, Furusawa, Ann Rev Biophys 2018

After evolution, correlation across different env cond. Ø Increases + slope-growth-rate proportional

Between same

Phenotypic constraint on a low-dimensional space

After evolution, the environmental response is constrained on a low-dimensional phenotype space.

Phenotypic change due to environmental variation, mutation, noise are constrained along a major axis

Formation of Dominant Mode Along Major Axis Robust to

Along Major Axis
Robust to
perturbations – strong
attractions attraction from most directions …… except one direction along which evolution progresses

changes in high-dimensional phenotype space are constrained along low-dimensional slow-manifold X_1
Both environment- and evolution- induced)
thanges in high-dimensional phenotype space are
constrained along low-dimensional slow-manifold
Furusawa, KK, Phys.Rev E 2018; KK, Furusawa, Ann Rev Biophys 2018

Formulation and Consequence of Hypthesis

Recall
$$
\sum_{j} J_{ij} \delta X_{j}(E) + \gamma_{i} \delta E = \delta \mu(E)
$$

 $\delta \mathbf{X} = \mathbf{L} (\delta \mu \mathbf{I} - \gamma \delta E)$ with $\gamma_i \equiv \frac{\partial F_i}{\partial E}$.

• γ(E): susceptibility to environment change

Only the smallest eigenvalue in J (or largest in L=1/J) contributes | λ' | >> | λ ο | ∼0|

Most changes occur along such slow manifold

Projection to this manifold wo $w^{\prime\prime}$ (v⁰) right(left) eigenvector for the smallest contributes $|\lambda^+| \gg |\lambda^0| \sim 0$

Most changes occur along such slow manifold
 $\delta X = \lambda^0 w_0 (\delta \mu (v_0 \cdot I) - (v_0 \cdot \gamma) \delta E).$
 Projection to this manifold we
 w (v⁰) right(left) eigenvector for the smallest

eigenvalue, i.e. γ・v small $\overline{0}$, $\overline{0}$, $\overline{0}$, $\overline{0}$ $0 \rightarrow$ riaht/loft) $\overline{\mathbf{0}}$ and $\overline{\mathbf{0}}$ a \rightarrow Slow manifold is roughly orthogonal to **γ** Consequence of Slow-Manifold Hypothesis (cont'd) $\gamma \cdot v_0 \sim 0$

 0 and 0 a

Separation of slowest mode in catalytic reaction net model eparation of slowest mode in catalytic
Eigenvalues of $J_{ij} = (\partial \dot{X_i}/\partial X_j)_{\mathbf{X_i} = \mathbf{X_i^*}}$

 $1st PCA$

1st PCA

→ Evolution -- Recall: Phenotypic change due to
environmental variation, mutation, noise are environmental variation, mutation, noise are constrained along the same major axis

Phenotypic changes by evolution and environmental changes are along a common dominant mode

Again, assume that most changes occur along such slow manifold Consequence of Hypothesis \rightarrow Correlation

between Environment (E) vs Evolutionary

(genetic) (G) Changes
 $J\delta X + \gamma(E)\delta E + \gamma(G)\delta G = \delta \mu(E)$.

Again, assume that

most changes occur along such slow manifold

Project to this sl Consequence of Hypothesis \rightarrow Correlation between Environment (E) vs Evolutionary (genetic) (G) Changes
 $J\delta X + \gamma(E)\delta E + \gamma(G)\delta G = \delta \mu(E)$.

$$
\delta Xi(G)/\delta Xi(E)=\delta\mu(G)/\delta\mu(E)
$$

using γ·νο ~0

(Genetic) evolution under the environmental condition \rightarrow recover growth-- $|\delta \mu(E)| > |\delta \mu(G)|$ δXi(G)/δXi(E)=δμ(G)/δμ(E)<1 $\begin{array}{ll} \hline \delta \mathrm{Xi}(G)/\delta \mathrm{Xi}(E)=\delta \mu(G)/\delta \mu(E) & \textrm{using } v \cdot v_0 \leq 0 \ \end{array}$

(Genetic) evolution under the environmental condition
 \rightarrow recover growth-- $\begin{array}{ll} \hline \delta \mu(E) > | \delta \mu(G) | \ \end{array}$
 \rightarrow All the expression levels tend to

Le Chatelier Principle? level by evolution

Deterministic phenotypic evolution constrained in

Mutation sites are different by strains. But.. Common trends in phenotypic space (low-dim structure) PC1 is highly correlated with the growth rate

Evolution of Catalytic reaction net model by switching environment (nutrient concentratyion) and check evol-env response

Mutate network and select those with higher growth –evo

Recovery of growth rate by adaptive evolution to

 $(Across all complete)$ δX i(G)/ δX i(E)=δμ(G)/δμ(E)<1

Evolution to novel environment -- the already evolved dominant mode is adopted to adapt to new environment \rightarrow Same phenotypic path when the tape is replayed.

with different genetic change

Sato, KK, PhysRevRes2020

 $PC1$

• Evolution to novel environment -- the already evolved dominant mode is adopted to adapt to new environment \rightarrow Same phenotypic path when the tape is replayed.

Recall…

^{Furusawa, kk Interfac}
Vip-Vg relationship across traits (phenotypes)
Vg(i): Vatiance of X(i) due to genetic mutation Furusawa, kk Interface 2015
Vip-Vg relationship across traits (phenotypes)

-
- *V*g relationship across traits (phenotypes)
Vg(i):Vatiance of X(i) <mark>due to genetic mutation</mark>
Vip(i):Variance of X(i) <mark>due to noise </mark>in dynamics Vip(i): Variance of X(i) due to noise in dynamics

Vg-Vip proportionality is explained by the slow manifold
Hypothesis
Evelution ecoure along this deminemt menifold **w Hypothesis** Vg-Vip proportionality is explained by the slow manifold
Hypothesis
Evolution occurs along this dominamt manifold **w**
 $V_{ip}(i) = (\mathbf{w}_i^0)^2 < \delta X^2 >_{noise}$

Evolution occurs along this dominamt manifold

$$
V_{ip}(i) = (\mathbf{w}_i^0)^2 < \delta X^2 >_{noise}
$$

$$
V_g(i) = (\mathbf{w}_i^0)^2 < \delta X^2 >_{mutation}
$$

 \rightarrow Vg(i)/Vip(i) = independent of i

(here we do not need the growth-rate constraint, only slow-manifold constraint is needed)

 $V_g(i) = (\mathbf{w}_i^0)^2 < \delta X^2 >_{mutation}$
 $V_g(i)/Vip(i) = \text{independent of } i$

here we do not need the growth-rate constraint

bw-manifold constraint is needed)
 V_g-Vip relationship \leftarrow Changes both by

(environmental) noise and (genetic) mutation (environmental) noise and (genetic) mutations are constrained along the direction

Need further studies to establish the present theory

- (i) Further Confirmation by Experiments
- (ii) Confirmation by Models : Universality? Catalytic Reaction Net-Cell Model ☑ Gene regulation Net Model (Sato, KK in prep) Ø Spin-glass Models (Sakata KK., PRL 2020) ☑ evolve spin Hamiltonian JijSiSj to achieve certain configuration dimensional reduction at replica symmetric phase Protein Model/Data (Tang KK., PRL2021) Ø correlation in structure dynamics & evolutionary dim reduction (iii) Theory for dimensional reduction? –1 or few dim? outliers in eigenvalues – separation of slow modes,
- Renormalization Group???
	- Projection to Collective Modes?

☑Protein; Change in Native structure by noise & by evolution, highly correlated and low-dimensional

Spin-Statistical Model Phenotype=Spin config.Si Genotype-Interaction Jij Hamiltonian H=-ΣJijSiSj Spin-Statistical Model

Phenotype=Spin config.Si Genotype-Interaction Jij

Hamiltonian H=-ΣJijSiSj

Fitness align target spins; environment- external field
 $\psi(J) = \overline{m_T}$, $m_T = \frac{1}{N_T} \sum_{i \in T} S_i$, Sakata,KK,PRL 2020 Spin-Statistical Model

Phenotype=Spin config.Si Genotype—Interaction Jij

Hamiltonian H=-ΣJijSiSj

Fitness align target spins; environment— external field
 $\psi(J) = \overline{m_T}$, $m_T = \frac{1}{N_T} \sum_{i \in T} S_i$,

1) Robust fitted state Moder

in config.Si Genotype—Interaction Jij
 $|=-\sum$ JijSiSj

rget spins; environment— external field
 $m_T = \frac{1}{N_T} \sum_{i \in T} S_i$,

d state at Replica Symmetric phase

of robustness

(cf Sakata,Hukushima,KK PRL 2009)
 $\begin{bmatrix}$

2) $RSB \rightarrow loss$ of robustness

Correlation in Responses to ext field and to mutation to Jij

60

30

 $\mathbf 0$

 $\mathbf{0}$

1000

generations

2000

2000

60

30

 $\mathbf 0$

 Ω

1000

developmental time

D

Congruence between development and evolution (cf, Haeckel,recapitulation)

For most (95%) examples, good correspondence

 0.8 0.6

 0.4

 0.2

Messages

- Messages
• (Cellular) Phenotypes are high-dimensional, but
their adaptive changes are drastically restricted their adaptive changes are drastically restricted in a low-dimensional space Messages
• (Cellular) Phenotypes are high-dimensional, but
their adaptive changes are drastically restricted
in a low-dimensional space
• Slow modes evolve and fascillitate evolution
←Result of steady-growth and evolutiona
-
- ← Result of steady-growth and evolutionary robustness (to noise and to genetic changes)
- their adaptive changes are drastically restricted
in a low-dimensional space
• Slow modes evolve and fascillitate evolution
← Result of steady-growth and evolutionary
• robustness (to noise and to genetic changes)
• Pheno even though genetic changes can be stochastic (replaying the tape, phenotypically same path)
- \leftarrow Phenotypic evolvability correlated by shortterm dynamics and fluctuation

Summary

Low-dimensional structure formed from highdimensional phenotypic space \leftarrow robustness (Furusawa, KK, Phys Rev E, 2018; KK, Furusawa, Ann Rev Biophys 2018;

Sato, KK, PRR 2020; Sakata, KK, PRL 2020, Tang KK PRL 2021)

