The threat of disinformation to epistemic security: an exactly solvable model

# Who can you trust?







If you can't trust your barber president, who can you trust?

### José F. Fontanari Universidade de São Paulo Brasil

supported by FAPESP and CNPq

## **Epistemic security**:

breakdown of trusted sources of information is one of the most pressing problems today.

## truth-telling vs. lying

#### Groundwork of the Metaphysics of Morals, Kant (1785)

A world in which everyone tells the truth is possible, whereas one in which everyone lies is unthinkable - not in the sense that it would be bad, but in the sense that it cannot exist.

#### Batesian mimicry (1865)



Papilio polytes mimic

Pachliopta aristolochiae unpalatable



### approach:

(evolutionary) game theory

+ quantitative genetics





• intuition for  $\gamma = 0$ 

 $\tau + 1$ 

 $\tau + 2$ 

A survivor at generation *t* with viability S has a well-defined lineage back to the generation  $\tau$  when the viability value S first appeared.  $\tau = 0.1....t$ 

probability new viability S appears (mutant), survives the challenge and passes to generation  $\tau + 1$ 

$$(1-w) \times S \times \frac{1}{\Lambda^{(\tau)}}$$

probability the ancestor is copied and the copyist survives the challenge and passes to generation  $\tau + 2$ 

probability the ancestor is copied and the copyist survives the challenge and passes to generation  $\tau + 3$ 

$$(1-w) \times S \times \frac{1}{\Lambda^{(\tau)}}$$

$$w \times S \times \frac{1}{\Lambda^{(\tau+1)}}$$

$$w \times S \times \frac{1}{\Lambda^{(\tau+2)}}$$

probability the ancestor is copied and the last copyist survives the challenge:

 $w \times S$ 

probability that an individual at generation t survives the challenge by copying an individual who has copied and individual at t - 1, who has copied an individual at t - 2, etc... who has copied an individual who explored the environment at generation  $\tau$ :

 $\frac{(1-w)w^t S^{t+1}}{\Lambda^{(\tau)}\Lambda^{(\tau+1)}\dots\Lambda^{(t-1)}}$ 

### https://doi.org/10.48550/arXiv.2205.07969

- analytical solution for  $N \to \infty$ 

 $\mathbb{E}_{S}(S^{n})$  probability S survives n challenges

• 
$$\langle \Lambda^{(0)}(w) \rangle = (1-w)\mathbb{E}_{S}(S) + wb_{1}\mathbb{E}_{S}(S)$$

• 
$$\langle \Lambda^{(1)}(w) \rangle = (1-w) \left[ \mathbb{E}_{S}(S) + \frac{w}{\langle \Lambda^{(0)} \rangle} b_{1} \mathbb{E}_{S}(S^{2}) \right] + \frac{w^{2}}{\langle \Lambda^{(0)} \rangle} b_{1} b_{2} \mathbb{E}_{S}(S^{2})$$

• 
$$\langle \Lambda^{(2)}(w) \rangle = (1-w) \left[ \mathbb{E}_{S}(S) + \frac{w}{\langle \Lambda^{(1)} \rangle} b_{1} \mathbb{E}_{S}(S^{2}) + \frac{w^{2}}{\langle \Lambda^{(1)} \rangle \langle \Lambda^{(0)} \rangle} b_{1} b_{2} \mathbb{E}_{S}(S^{3}) \right]$$

$$+ \frac{w^{3}}{\langle \Lambda^{(1)} \rangle \langle \Lambda^{(0)} \rangle} b_{1}b_{2}b_{3}\mathbb{E}_{S}(S^{3})$$

$$+ \frac{w^{3}}{\langle \Lambda^{(1)} \rangle \langle \Lambda^{(0)} \rangle} b_{1}b_{2}b_{3}\mathbb{E}_{S}(S^{3}) + \frac{\tau}{\langle \Lambda^{(2)} \rangle \langle \Lambda^{(1)} \rangle} b_{1}b_{2}\mathbb{E}_{S}(S^{3})$$

$$+ \frac{w^{3}}{\langle \Lambda^{(2)} \rangle \langle \Lambda^{(1)} \rangle \langle \Lambda^{(0)} \rangle} b_{1}b_{2}b_{3}\mathbb{E}_{S}(S^{4})$$

$$+ \frac{w^{4}}{\langle \Lambda^{(2)} \rangle \langle \Lambda^{(1)} \rangle \langle \Lambda^{(0)} \rangle} b_{1}b_{2}b_{3}b_{4}\mathbb{E}_{S}(S^{4})$$

$$b_\tau = 1 - \gamma + \gamma \mathbb{E}_{\epsilon}(\epsilon^{\tau})$$

• analytical solution for  $N \to \infty$  (continuation)

$$\begin{split} \langle \Lambda^{(t)}(w) \rangle &= (1-w) \sum_{\tau=0}^{t} a_{\tau,t} \mathbb{E}_{S}(S^{\tau+1}) w^{\tau} + a_{t+1,t} \mathbb{E}_{S}(S^{t+1}) w^{t+1} \\ a_{0,t} &= 1 \end{split} \qquad \begin{aligned} a_{\tau,t} &= \frac{b_{\tau}}{\langle \Lambda^{(t-\tau)} \rangle} a_{\tau-1,t} \qquad \langle \Lambda^{(-1)} \rangle \equiv 1 \end{aligned}$$



theoretical predictions fit the simulation data perfectly for large *N*.

mean population fitness at t=100

• equilibrium analysis ( $t \to \infty$ )

trust-always pure strategy (w = 1)

$$\langle \Lambda^{(\infty)}(1) \rangle =$$
  $\begin{array}{c} 1 - \gamma \ \text{se } \eta > 0 \\ 1 \ \text{se } \eta = 0 \end{array}$ 



what's  $\eta$ ?

$$\epsilon \sim \text{Uniform}(1 - \eta, 1)$$



trust-no-one pure strategy (w = 0)  $\langle \Lambda^{(\infty)}(0) \rangle = \frac{1}{\sqrt{1 + \sigma^2}}$ 

What matters is the value of  $w = \tilde{w}$  that maximizes the fraction of individuals that survive the environmental challenge.

$$\tilde{w} = 0$$
 for  $\eta > 4 - 2\sqrt{3} \approx 0.536$ 

transition point determined by the condition  $\frac{d < \Lambda^{(\infty)} >}{dw} |_{w=0} = 0:$  $\eta_c^0 = \frac{2}{\gamma} \left( 1 - \frac{\sqrt{1 + 2\sigma^2}}{1 + \sigma^2} \right)$ 

 $\langle \Lambda^{(\infty)}(w) \rangle$  can be seen as minus the freeenergy in a Landau-Ginsburg framework • phase diagram



trust-no-one regime disappears if  $\eta_c^0(\gamma = 1) > 1$ , i.e.,

$$\sigma^2 > 3 + 2\sqrt{3} \approx 6.46$$

- lessons
  - Increase of the hazardousness of the environment  $\sigma^2$  favors trust. interesting
  - Increase of cost  $\eta$  of believing corrupted information favors the trust-always regime  $(\tilde{w} = 1)$ .
  - Increase of deceitfulness  $\gamma$  and of cost  $\eta$  of believing corrupted information favors trust-no-one regime ( $\tilde{w} = 0$ ). obvious

### Who can we trust?



if the environment is harsh, trust any survivor.

Zahavi's honest signalling principle

Thanks for the attention!