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The unprecedented complexity of life

complexity

“I know it when I see it”

Justice Potter Stuart on definition of obscenity (1964)

S. Lloyd, “Measures of complexity: a non-exhaustive
list” – 40 different definitions



Evolution of complexity, multilevel 
learning and thermodynamics

• Wolf YI, Katsnelson MI, Koonin EV.  Physical foundations of biological 
complexity. Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):E8678-E8687

• Vanchurin V. 2020. The World as a Neural Network. Entropy 22(11):1210

• Vanchurin V, Wolf YI, Katsnelson MI, Koonin EV. Toward a theory of 
evolution as multilevel learning. Proc Natl Acad Sci U S A. 2022 Feb 
8;119(6):e2120037119.

• Vanchurin V, Wolf YI, Koonin EV. Katsnelson MI. Thermodynamics of 
evolution and the origin of life. Proc Natl Acad Sci U S A. 2022 Feb 
8;119(6):e2120042119



What is life? What do we want to 
explain? The signatures of biology

• 1. Distinct information processing units – cells, organisms. 
Selection for persistence/stability.

• 2. Frustration – conflicting objectives on different scales –
e.g., individual cells vs multicellular organism – major driver of 
complexity evolution – general physical phenomenon, e.g. 
origin of patterns in spin glasses (Wolf et al 2018).

• 3. Multilevel hierarchy of scales/multilevel selection.

• 4. Near optimality – stochastic optimization – local minima on 
complex, rugged fitness landscape

• 5. Diversity of near optimal solutions - rugged fitness 
landscapes

Vanchurin, Wolf, Katsnelson, EK, PNAS 2022



What is life? What do we want to 
explain? The signatures of biology

• 6. Separation of genotype from phenotype – digital vs 
analogue information – feedback, asymmetric information 
flow (Central Dogma).

• 7. Replication of digital information carriers.

• 8. Natural (biological)  selection – predicated on #1, #6, #7.

• 9. Parasites – host-parasite coevolution – emergence of 
parasites is inevitable and promotes complexity

• 10. Programmed death – general feature of all cells but 
occurs at other levels as well

Vanchurin, Wolf, Katsnelson, EK, PNAS 2022



More general principles of system evolution/
learning to explain complexity including biology
• P1. Loss function (optimization). In any evolving/learning system, there exists a 

loss function of time-dependent variables that is minimized during evolution.

• P2. Hierarchy of scales. Evolving systems encompass multiple dynamical variables 
that change on different temporal scales.

• P3. Frequency gaps. Dynamical variables are split among distinct levels of 
organization separated by sufficiently wide frequency gaps - substantially different 
characteristic time scales/change rate.

• P4. Renormalizability. Across the entire range of organization levels of evolving 
systems, a statistical description of faster-changing (higher-frequency) variables is 
feasible through the slower-changing (lower-frequency) variables.

• P5. Extension. Evolving systems have the capacity to recruit additional variables 
that can be utilized to sustain the system and the ability to exclude variables that 
could destabilize the system.

• P6. Replication and elimination. Evolving systems replicate and eliminate 
information-processing units (IPUs) on every level of organization.

• P7. Information flow. In evolving systems, slower-changing levels absorb 
information from faster-changing levels during learning and pass information 
down to the faster levels for prediction of the state of the environment and the 
system itself.

Vanchurin, Wolf, Katsnelson, EK, PNAS 2022
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General evolutionary principles 
follow from learning 

dynamics/optimization

During system evolution, nearly constant variables 

become adaptable, yielding additional levels of learning 

– growing complexity

Renormalizability (P4) – same principles and equations 

(e.g. those for loss function) apply at all levels

multilevel learning         multilevel selection

Vanchurin, Wolf, Katsnelson, EK, PNAS 2022



Asymmetrical information flow –
generalized Central Dogma of 

Molecular Biology (P7)
• 1) Environment prediction phase: 

fast information flow from slow changing  variables (genome) to fast-
changing variables (phenotype), through multiple layers

• 2) Environment learning phase: slow information flow from fast-changing to slow-
changing variables – not a microscopic reversal of prediction phase (mutation-
selection)

• Slow variables have to be largely independent from fast variables to determine 
temporally stable rules that are essential for learning/evolution – separation 
between long-term (nucleic acids) and short term (proteins) memory - hence 
Generalized Central Dogma

[informal explanation – formal derivation given in Vanchurin et al.     
PNAS 2022; 
recall Takeuchi’s 
talk]

Crick, Nature 1970



Frustration: different learning objectives

at different levels 

From frustrated states to new levels of 

organization/selection and complexity

Wolf, Katsnelson, Koonin, PNAS 2018

Multilevel selection



Major transitions in evolution
Evolutionary Transition in Individuality:

New levels of selection – frustration begets 

cooperation

• Origin of cells

• Eukaryotic cells

• Multicellularity 

• Eusociality

• Society

Koonin Phil Trans Royal Soc 2016



Phenomenology of major transitions in 
evolution including origin of life

Origin of life: a phase transition that gave rise to a distinct, 

highly efficient form of learning - learning algorithm 

known as natural selection

Transition occurs when

Ω𝑝(𝒯𝑐 ,ℳ𝑐) = Ω𝑏(𝑇𝑐 , 𝜇𝑐)

That is, grand potential of an ensemble of molecules becomes 

equal to grand potential of a biological system 

𝒯𝑐 ,ℳ𝑐 - temperature, chemical potential; 

Tc,mc – “evolutionary temperature”, evolutionary potential

[briefest formulation, details in Vanchurin et al, PNAS 2022;

recall Vitaly Vanchurin’s talk]

Later transitions can be described analogously



Biological reproducers-
replicators

Prebiological

reproducers

Origin of Life

Temps

C
o

m
p

le
xi

té

Transition from pre-life to life

Life

Prebiotic 
chemistry

First
cells

Cenancestor
(LUCA)?

Abiotic
organic

chemistry

Ω_𝑝 (𝒯_𝑐,ℳ_𝑐)=Ω_𝑏 (𝑇_𝑐,𝜇_𝑐)

Courtesy of Puri Lopez-Garcia 



• Two principal types of propagating biological 
entities

• 1. Reproducers – physical structure reproducing, 
genome replication insufficient – cells

• 2. Replicators – genome replication only – mobile 
genetic elements including viruses but also 
cellular genomes

• -Origin of life: mutualistic merger of reproducers 
and replicators

Origins of cooperation and conflict: 
A mutualistic scenario for the origin of life under the 

multilevel learning perspective

Puri Lopez-Garcia
Univ Paris-Saclay



Origins of cooperation and conflict: 
A mutualistic scenario for the origin of life

Pre-life
Proto-metabolic 

networks within 

vesicles/

compartments

Selection/learning without genomes:

Survival of the most persistent

Nucleotides (and amino acids?) as cofactors: 

Driving force for nucleotide (and amino acid?) accumulation

Evolution of ‘pure’ reproducers

Learning:

Non-trainable 

variables: x(e), x(o)

Trainable variables: 

q(a), q(n) – traits of 

reproducers



Origins of cooperation and conflict: 
A mutualistic scenario for the origin of life

Pre-life

Selection without genomes:

Survival of the most persistent

Learning: nucleotide 

accumulation

enables 

polymerization:

Ribozyme catalysts

Including aminoacylating ribozymes

Concomitant non-templated 

peptide synthesis

Evolution of ‘pure’ reproducers



Origins of cooperation and conflict: 
A mutualistic scenario for the origin of life

Pre-life

Selection without genomes:

Survival of the most persistent

nucleotide 

accumulation

enables 

Polymerization:

ribozyme catalysts Learning - Origin of replicators: 

Memorizing sequences of

efficient ribozymes – selection

for replicationConcomitant non-templated 

peptide synthesis

Proto-

Life:

Memory 

of the 

system

state stored

in RNA sequences



Origins of cooperation and conflict: 
A mutualistic scenario for the origin of life

Origin of genomes: 

survival of the fittest

Evolution of replicators: 

replicator-carrying protocells –

reproducer-replicator mergers -

outcompete those lacking

replicators

Mutualistic relationship/coevolution

between replicators and reproducers

Concomitant origin of translation –

enzymes

Proto-

Life:

Memory 

Of the 

system

state

Life

Reproducer components 

encoded by replicators

Emergence of 

multilevel learning:

New class of slow

variables q(c):

genomes/long term memory



Origins of cooperation and conflict: 
A mutualistic scenario for the origin of life

Origin of parasites and 

biological conflict

Split of replicators into cooperators 

(cellular genomes) and parasites –

concomitant  with origin of efficient 

replication

Early Life

Life

Sustained evolution 

enabled by replicators

encoding components 

of reproducers: 

Stable core: q(a)       q(c) 



A mathematical model of the origin of 
life through a mutualistic symbiosis of 

reproducers and replicators: 
conditions for the origin of genomes

Babajanian, Wolf, Allahverdyan, Khachatryan, Lopez-Garcia, EK, in preparation



Conditions for the origin of genomes: competition 

between protocells containing and lacking genetic 

elements 

yellow: protocells without genetic elements

blue: protocells containing genetic elements

black circles: resources

green: genetic elements – cooperators

red: genetic elements – parasites/defectors

Agent-based model



Pre-life: evolution of “pure” reproducers, no replicators

Protocells harbor networks of proto-metabolic reactions

and divide randomly

Protocell population growth depends on housekeeping cost

DE and successful division probability p. 

Learning/Selection to decrease DE and increase p



Symmetrically dividing protocells 
outcompete randomly dividing ones



 

Competition between protocells with and without replicators:

Chance for cooperators-only protocells to emerge via random division  

 

K, mean replication rate per round of resource consumption by protocells 

K=1

K=10

replicators

no replicators

cooperators

parasites/defectors
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Implications for origin of life

• Frustration between replicator and reproducer-level 
selection – resulting in selection for coordination of 
replication and division rates

• Advantage of stochastic division in the presence of 
cooperators and parasites – provides for emergence of 
cooperators-only protocells

• Redundancy of replication machinery in cooperators-
only protocells – origin of large genomes

• Symmetrical division advantageous once cooperators-
only protocells emerge 

• Vulnerability to parasite invasion – early emergence of 
defense in protocells



Take home…

• The principal features of life can be derived 
from the formalism of multilevel learning

• Major transitions in evolution: genuine, 
physical phase transitions

• The key transition – origin of life (cells) –
“mutual learning” of reproducers and 
replicators – mutualistic symbiosis, 
coordination of genome reproduction and 
protocell division as a condition for fixation of 
genomes in evolution
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