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Consider a (perhaps time-varying) master equation:

• Example: Dynamics of a Turing Machine

• Example: (Noisy) dynamics of a digital gate in a circuit

• Example: (Noisy) dynamics of an entire digital circuit

• Example: Spike train going down an axon

• Example: Neuronal assemblies communicating



Consider a (perhaps time-varying) master equation:

Just for fun, 
let’s see how Shannon entropy of p 

evolves under this equation



Consider a (perhaps time-varying) master equation:

● Entropy flow rate

● Entropy production rate



Consider a (perhaps time-varying) master equation:

● Entropy flow rate

● Entropy production rate

• Entropy production (EP) rate is non-negative

Van den Broeck and Esposito, Physica A, 2015



Consider a master equation that sends p0(x) to p1(x) = ∑x0P(x1 | x0) p0(x)

Integrate over time:

• ΔS = S(p1) – S(p0) is gain in Shannon entropy of p

• -ΔQ is (Shannon) entropy flow from system between t = 0 and t = 1

• ΔΣ is total entropy production in system between t = 0 and t = 1
- cannot be negative
(I.e., the second law of thermodynamics)

Van den Broeck and Esposito, Physica A, 2015



GENERALIZED LANDAUER BOUND

• System connected to multiple reservoirs, e.g., heat baths at different 
temperatures. (So “kBT ” not defined.)

• Arbitrary number of states 

• Arbitrary initial distribution p0
• Arbitrary dynamics P(x1 | x0) 
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GENERALIZED LANDAUER BOUND

• System connected to multiple reservoirs, e.g., heat baths at different 
temperatures. (So “kBT ” not defined.)

• Arbitrary number of states 

• Arbitrary initial distribution p0
• Arbitrary dynamics P(x1 | x0) 

Entropy Production (!!" is non-negative. So:

• Assume local detailed balance

Then: -!# is (temperature-normalized) heat flow into environment

“G𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝐿𝑎𝑛𝑑𝑎𝑢𝑒𝑟!𝑠 𝑏𝑜𝑢𝑛𝑑”:

Entropy 7low (i.e., −∆Q) ≥ S(p0) − S(p1)



EXAMPLE – LANDAUER’S CONCLUSION

• System evolves while connected to single heat bath at temperature T

Then heat flow into environment  =  -kBT !#$
• Two possible states

• p0 uniform

• Process implements bit erasure (so p1a delta function)

• Assume local detailed balance

So generalized Landauer’s bound says

Landauer’s conclusion

Total heat 7low into environment ≥ kBT ln[2]

(Parrondo et al., Nature Physics 2015, Sagawa, J. Stat. Mech. 2014, 
Hasegawa et al., Phys. Letters A 2010, Wolpert, Entropy 2015, etc.)



IMPLICATATION OF GENERALIZED LANDAUER BOUND

p0 is initial distribution, i.e., distribution over inputs. 
- Fixed by environment / previous computations.

p1 is ending distribution, i.e., distribution over outputs. 
- Fixed by the (possibly noisy) computation, P(x1 | x0)

Increasing noise in computation 
(increases entropy of ending distribution and so) 

reduces minimal thermodynamic cost



WHAT IS REALLY IMPORTANT THERMODYNAMICALLY?

• System evolves while connected to single heat bath at temperature T

Then heat flow into environment = -kBT !#$

• At scale of real computers and brains, kBT [S(p0) − S(p1)] is small

• At scale of real computers and brains, ∆! is dominant cost

What determines 8%?



1) Given a fixed computer, varying distribution over inputs changes 
expected thermodynamic costs – how exactly?

In particular, how does EP generated by a fixed process 
P(x1 | x0) depend on the initial distribution, P(x0)? 



Dependence of EP on initial distribution

• Arbitrary dynamics P(x1 | x0) 

• Assume system is thermo. reversible for initial distribution q0

I.e.,

• Run that system with initial distribution p0 ≠ q0 instead:

where D(. || .) is relative entropy (KL divergence)

ΔΣ(p0) = D(p0 || q0) − D(p1 || q1)
≥ 0

ΔΣ(q0) = 0 

Wolpert, D., Kolchinsky, A., New J. Phys. (2020)
Riechers, P.. Gu, M., Phys. Rev. E (2021)
Kolchinsky, A., Wolpert D., arxiv:2103.05734



Dependence of EP on initial distribution

• Arbitrary dynamics P(x1 | x0) 

• Assume system is thermo. reversible for initial distribution q0

I.e.,

• Run that system with initial distribution p0 ≠ q0 instead:

where D(. || .) is relative entropy (KL divergence)

ΔΣ(p0) = D(p0 || q0) − D(p1 || q1)
≥ 0

ΔΣ(q0) = 0 

Any nontrivial process that is 
thermodynamically reversible for one initial distribution 

will not be for any other initial distribution



Example/

• Two distinct bit-erasing gates, each with thermo. rev. initial distribution q0
• Run gates in parallel, on bits xA and xB, with initial distribution p0(xA, xB)

• Assume p0(xA) = q0(xA) and p0(xB) = q0(xB). 

• So each gate, by itself, generates zero EP. But:

• Formally: Since gates are distinct, the thermo. rev. joint distribution is 

q0(xA, xB) = q0(xA)q0(xB). 

If p0(xA, xB) statistically couples the bits, then 
full system is not thermo. reversible, 

and generates nonzero EP
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Example/

• Two distinct bit-erasing gates, each with thermo. rev. initial distribution q0
• Run gates in parallel, on bits xA and xB, with initial distribution p0(xA, xB)

• Assume p0(xA) = q0(xA) and p0(xB) = q0(xB). 

• So each gate, by itself, generates zero EP. But:

• Intuition: Running two thermo. reversible gates in parallel loses   
information in their initial coupling, and so is not thermo. reversible.

If p0(xA, xB) statistically couples the bits, then 
full system is not thermo. reversible, 

and generates nonzero EP
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• Two distinct bit-erasing gates, each with thermo. rev. initial distribution q0
• Run gates in parallel, on bits xA and xB, with initial distribution p0(xA, xB)

• Assume p0(xA) = q0(xA) and p0(xB) = q0(xB). 
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Example/

• Two distinct bit-erasing gates, each with thermo. rev. initial distribution q0
• Run gates in parallel, on bits xA and xB, with initial distribution p0(xA, xB)

• Assume p0(xA) = q0(xA) and p0(xB) = q0(xB). 

• So each gate, by itself, generates zero EP. But:

• Broader lesson: Whatever its benefits might be, 

modularity is thermodynamically costly (!)

If p0(xA, xB) statistically couples the bits, then 
full system is not thermo. reversible, 

and generates nonzero EP



Example - Thermodynamics of circuits

• Currently, all mass-produced computers are implemented  
with circuits.

• The simplest circuit is one without loops or branches (a
“straight-line program”)

• If set of allowed gates are a universal 
basis (e.g., NAND gates), then can
build a circuit with them to implement 
any desired Boolean function.



• For fixed P(x1 | x0), changing p0 changes S(p0) − S(p1)

• N.b., the same P(x1 | x0)   - e.g., same AND gate - has different p0, 
depending on where it is in a circuit.

• So even for a thermo. reversible gate (!!(p0) = 0), changing the gate’s 
location in a circuit (changes S(p0) − S(p1) and so) changes -!Q(p0)



• Changing a gate’s location in a circuit changes S(p0) − S(p1), and so 
changes the heat it produces, -!Q(p0)

• Sum those heats over all gates to get minimal heat flow of that circuit

• Formally, those differences in minimal heat of the circuits are differences in 
EPs of the circuits, arising due to modularity of gates

Ø A new circuit design optimization problem

Different circuits implementing same Boolean function 
on same input distribution have different minimal heat



NOTATION:

𝐼 𝑃 𝑋!, 𝑋", … = ∑# 𝑆(𝑃 𝑋# ) − 𝑆(𝑃 𝑋!, 𝑋", … )

- “Multi-information” (also called “total correlation”)

- A generalization of mutual information

- Quantifies how much information is shared among the Xi



WHAT CIRCUIT TO COMPUTE A GIVEN FUNCTION f?

(Partial) answer: Assume each gate re-initializes the upstream gates that 
provided its input. 

Then change in total Landauer cost if use circuit C′ rather than C to compute f:

where g indexes gates.

I.e., choose circuit that implements f with 
smallest sum of multi-informations

of input distributions into its gates.
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WHAT CIRCUIT TO COMPUTE A GIVEN FUNCTION f?

(Partial) answer: Assume each gate re-initializes the upstream gates that 
provided its input. 

Then change in total Landauer cost if use circuit C′ rather than C to compute f:

where g indexes gates.

I.e., choose circuit that implements f with 
smallest sum of multi-informations

of input distributions into its gates.

A global circuit design optimization problem.
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At the macroscopic scale, expected entropy cannot decrease; 
Can always tell if a movie of a macroscopic process runs backward

At the microscopic scale, expected entropy cannot change;
Can never tell if a movie of a microscopic process runs backward

FLUCTUATION THEOREMS

What happens at mesoscopic scale?



Consider a (perhaps time-varying) master equation

●

●

FLUCTUATION THEOREMS

These are expectations over trajectories.



Consider a (perhaps time-varying) master equation

●

●

FLUCTUATION THEOREMS

These are expectations over trajectories.
Can also define trajectory-level thermodynamic quantities:

• Stochastic entropy if system in state i at time t:

• Expectation of stochastic entropy is Shannon entropy, S(p(t))



FLUCTUATION THEOREMS

Can define trajectory-level thermodynamic quantities. 

• Stochastic entropy if system in state i at time t:

Integral fluctuation theorem (FT) constrains the average over trajectories of total (time-
integrated) EP along a trajectory:

(Seifert, Reports on Progress in Physics, 
2012)



FLUCTUATION THEOREMS

Can define trajectory-level thermodynamic quantities. 

• Stochastic entropy if system in state i at time t:

Integral fluctuation theorem (FT) constrains the average over trajectories of total (time-
integrated) EP along a trajectory:

• Apply Jensen’s inequality: expected EP over trajectories is non-negative –
second law, as before.

• But nonzero probability that in any single trajectory, EP < 0



FLUCTUATION THEOREMS

Can define trajectory-level thermodynamic quantities. 

• Stochastic entropy if system in state i at time t:

Integral fluctuation theorem (FT) constrains the average over trajectories of total (time-
integrated) EP along a trajectory:

- Quantifies probability that at any scale, movie runs backward

• But nonzero probability that in any single trajectory, EP < 0



THERMODYNAMIC UNCERTAINTY RELATIONS (TURs)

• x is a trajectory of system states during a given time interval

• A current J(x) is any (!) function of the state transitions in x that is odd 
under time-reversal

Examples: Net charge flow from anode to diode;
Net number of times a particular neuron fires;
Net value of predictive coding error signals.

• In many conditions (e.g., a steady state) a Thermodynamic Uncertainty 
Relation bounds current statistical precision by !!:

• Example: If variance in predictive coding error signals is small, then
small expected errors is necessary for small thermodynamic cost

Accurate predictions in predictive coding is necessary 
to have low energetic cost



THERMODYNAMICS OF CO-EVOLVING COMPUTERS

• Many examples of multiple asynchronous co-evolving computers
organelles in a cell
neurons in a brain
organs in a biological organism
humans in a social organization

• Network topology of interactions has major thermodynamic consequences



Much of conventional stochastic thermodynamics

– including (almost) all FTs and TURs –

is formulated for single systems, not multiple interacting systems



Example of interacting systems

• B is level of ligand concentration in medium
• A is cell wall detectors of ligand concentration
• C is cell wall detectors of ligand concentration



• Red arrows indicate dependencies of rate matrices of the three systems

• N.b., {B} evolves independently, but is observed by {A} and {C}

• {A} and {C} not physically coupled, but become statistically coupled with time

Example of interacting systems

A                          B                            C

x(t)

x(t + dt)



• {AB}, {B}, and {BC} are units

Example of interacting systems

A                          B                            C

x(t)

x(t + dt)

A unit r is a set of systems that evolve autonomously



• Each unit has its own master equation, its own EP, own FTs, own TURs, etc.

Example of interacting systems

A                          B                            C

x(t)

x(t + dt)

A unit r is a set of systems that evolve autonomously



Example of interacting systems

A                          B                            C

x(t)

x(t + dt)

A unit r is a set of systems that evolve autonomously

How are fluctuations in EPs of the units coupled?



• Conditional integral fluctuation theorem: For any unit r,

A                          B                            C

x(t)

x(t + dt)



• Conditional integral fluctuation theorem: For any unit r,

• System-wide EP for trajectory x:

- is “inclusion-exclusion sum”, of unit EPs over trajectory x

- is (change in) “inclusion-exclusion sum” of Shannon entropies

Σ̂r
′σ

r
′

(x)

∆I
∗(x)

A                          B                            C

x(t)

x(t + dt)



• Conditional integral fluctuation theorem: For any unit r,

• System-wide EP for trajectory x:

- is “inclusion-exclusion sum”, of unit EPs over trajectory x

- is (change in) “inclusion-exclusion sum” of Shannon entropies

Combining: For any unit r,

Σ̂r
′σ

r
′

(x)

∆I
∗(x)

A                          B                            C

x(t)

x(t + dt)



• Using this result repeatedly for different choices of unit r gives:

where I(A ; C | B)(t) is mutual information between the two types of receptor, 
conditioned on ligand concentration level

• So if want to change conditional mutual information a lot during fixed time interval, 
must pay for it with large EP of both the units BC and AC

Speed limit theorem for interacting systems

A                          B                            C

x(t)

x(t + dt)



• If ligand concentration is constant in time, total EP of full system is bounded by

• A larger lower bound on total EP of full system than the second law,

reflecting informational coupling among ligand concentration and two receptor types

Strengthened second law for interacting systems



• Suppose ligand concentration in stationary state, so standard TUR applies to that system, 
but overall system does not obey conditions for any conventional TUR. 

• So conventional TUR does not apply to overall system

• Even so:

• So if ligand concentration varies in a noisy cyclic process, and is in a stationary state, 
then the less noise in the cycling, the more EP is produced by full system 

New kind of TUR



• Suppose all rate matrices constant in time (no mechanical work), 
and first receptor is in a stationary state:

• A larger lower bound on total EP of full system than the second law,
reflecting structure of interactions among the three systems

Strengthened second law for interacting systems



• Suppose that in addition, ligand concentration starts in equilibrium. Then joint system AB 
would be in stationary state. However, joint system BC is relaxing to equilibrium.

• Systems AB and BC obey different TURs, and no conventional TUR applies to full system

• Even so:

New kind of TUR



• Exact equations for entire entropy flow of a system:

EF(p0) = Landauer cost (p0) +  EP(p0)

• Thermodynamic Kolmogorov complexity is bounded (unlike conventional 
Kolmogorov complexity)

• Average work to run a TM is infinite

• Different circuits, all implementing the same function, all using thermodynamically 
reversible gates, have different thermodynamic costs.

• Very difficult problems of finding least-cost circuit for a given function. 

• For real digital computers, brains, etc., dominant cost is EP(p0), not Landauer cost

• TURs, speed limit theorems, mismatch cost, all provide lower bounds on EP(p0)
arising from how a computer is used and how it performs.

CONCLUSIONS
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