# Phenotypic switching as a mechanism to circumvent fitness valleys

#### Bartek Waclaw

School of Physics and Astronomy University of Edinburgh



and

Dioscuri Centre for Physics and Chemistry of Bacteria Institute of Physical Chemistry PAS Warsaw, Poland



#### Acknowledgments



Andrew Tadrowski



Martin Evans



THE ROYAL SOCIETY OF EDINBURGH

### Motivation: bacterial infections

Responsible for 1.3M deaths/year worldwide. May increase to 10M/y by 2050.

#### Resistance to antibiotics is a concern



Better prevention, diagnostics, and treatment required

What we do: quantitative understanding of bacterial infections and antibiotic resistance

- modelling
- experiments

## Rapid evolution of resistance in drug gradients – insight from modelling



M. Baym, et al, Science 353, 1147 (2016)



P.Greulich, B. Waclaw, R. Allen, Phys. Rev. Lett. **109**, 088101 (2012)



low drug concentration

high drug concentration



### Phenotype switching

Phenotypic plasticity: capacity to change phenotype in response to environmental changes – without change to its genotype. All organisms do it.

Stochastic phenotype switching (SPS) occurs without any sensing mechanism - this is what we're interested in.

A `bet-hedging' strategy: beneficial for when environmental changes are frequent and unpredictable.





SPS is commonly observed in bacteria

experimental

- H. J. E. Beaumont, et al., Nature 462, 90 (2009).
- Y. Ito, et al., Mol Syst Biol 5, 264 (2009).
- A. Solopova, et al., PNAS **111**, 7427 (2014).
- M. Arnoldini, et al., PLoS Biol 12, e1001928 (2014).
- H. Hasman, et al., Journal of Bacteriology **182**, 1089 (2000). theory
- E. Kussell and S. Leibler, Science 309, 2075 (2005).
- P. Ashcroft, et al., J. R. Soc. Interface **11**, 20140663 (2014).
- A. Taitelbaum, et al., Phys. Rev. Lett. **125**, 048105 (2020). theory+experiment
- N. Q. Balaban, et al., Science **305**, 1622 (2004).
- M. Acar, et al., Nature Genetics 40, 471 (2008).

#### SPS example – bacterial persistence

*Escherichia coli* can switch between normal and persister states. Persister cells grow at a slower rate than the normal cells but are resistant to antibiotics



Balaban et al. Science 2004

Could persistence speed up evolution by providing a "safe haven" for bacteria to try out different mutations?

#### More generally: Could phenotype switching help to avoid fitness valleys?

### A 1-slide summary of this talk:



genotype space

#### A simple model



#### More formally...

State: 
$$C = (n_{1A}, n_{2A}, n_{3A}, n_{1B}, n_{2B}, n_{3B}), \qquad n_i = 0, ..., K$$

Master equation

$$\frac{\partial P(C,t)}{\partial t} = \sum_{C' \neq C} (P(C',t)w(C' \to C) - P(C,t)w(C \to C'))$$

 $w(\mathcal{C} \rightarrow \mathcal{C}')$  are transition rates, for example

$$w(\{n_{1A}, ..., n_{1B}, ...\} \rightarrow \{n_{1A} - 1, ..., n_{1B} + 1, ...\}) = \alpha \qquad \text{switching}$$
  

$$w(\{n_{1A}, ...\} \rightarrow \{n_{1A} + 1, ...) = (1 - \mu)r_{1A}\left(1 - \frac{N}{K}\right) \qquad \text{growth}$$
  
etc.

nhonotypo

We simulate the model on a computer using different techniques depending on which observable we are interested in (exact kinetic MC, tau-leaping) Approximate analytic solutions available in some regimes (won't talk much about it)

### Results for no fitness cost for the $2^{nd}$ phenotype (c = 0)

We measure the time to obtain a single organism of the best-adapted phenotype 3A Small system (K=100), low mutation ( $\mu = 10^{-5} \dots 10^{-2}$ ,  $K\mu < 1$ ),  $\delta = 0.4$ , d = 0.1



#### Optimal switching rate exists for a broad range of mutation rates

#### Time to adaptation decreases monotonically in the absence of $2A \leftarrow \rightarrow 2B$ transition



 $\begin{array}{c}
1 \\
10^{8} \\
10^{6} \\
10^{4} \\
10^{-8} \\
10^{-6} \\
10^{-4} \\
10^{-4} \\
10^{-2} \\
\alpha
\end{array}$ 

Reason: rapid transitions  $2A \leftarrow \rightarrow 2B$ (absent here) create an effective fitness valley at genotype 2

#### Fastest trajectories avoid the fitness valley



#### Time to adaptation for different trajectories

 $T_A \approx \frac{1}{(1-d)K\mu^2 d(1/\delta - 1)}$  tunnelling through the barrier for small  $\alpha$  $T_B \approx \frac{1}{\alpha} + \frac{5}{\mu d}.$  switching to the alternate phenotype B for intermediate  $\alpha$ Τ  $T = \frac{T_A T_B}{T_A + T_B}$ large  $\alpha$ : tunnelling through the "effective" fitness valley made of combined 2A and 2B:  $10^{8}$  $T_{\text{comb,ST}} \approx \frac{1}{(1-d)K\mu^2 d(1/(1-r_{2 \text{ comb}})-1)}$  $10^{7}$  $r_{2,\text{comb}} = n_{2A}r_{2A} + n_{2B}r_{2B}$  $10^{6}$  $= \frac{(d+\alpha)(2-\delta) + \sqrt{\delta^2(\alpha+d)^2 - 4\alpha^2(\delta-1)}}{2(2\alpha+d)}$ 10<sup>-3</sup> 10<sup>-5</sup> 10<sup>-9</sup> 10<sup>-7</sup> 10<sup>-1</sup> 10

# Phenotype switching is favoured in a large region of parameter space



Here  $\mu = 10^{-6}$ ,  $\alpha \sim 10^{-3}$ ,  $K \sim 10^9$  - biologically realistic values

# Switching phenotypes remains advantageous also for fitness cost c > 0

![](_page_14_Figure_1.jpeg)

- phenotype switching still reduces time to adaptation
- no optimal switching rate for larger *c*

#### **Experimental evidence?**

Idealized model, not meant to reproduce any specific experiment

However: some evidence that a similar mechanism may be relevant for the antibiotic ciprofloxacin

![](_page_15_Figure_3.jpeg)

J. Bos, Q. Zhang, S. Vyawahare, E. Rogers, S. M. Rosenberg, and R. H. Austin, *Emergence of Antibiotic Resistance from Multinucleated Bacterial Filaments*, PNAS 2015.

# Evolution of resistance to the antibiotic ciprofloxacin

5 specific mutations increase resistance of *E. coli* by 3 orders of magnitude We represent mutants by binary sequences:

![](_page_16_Figure_2.jpeg)

# The fitness of mutants depends on antibiotic concentration

![](_page_17_Figure_1.jpeg)

the curve

growth rate(antibiotic conc.)

has the same shape for all mutants

S. G. Das, et al., ELife 9, e55155 (2020).

#### **Fitness landscapes**

![](_page_18_Figure_1.jpeg)

intermediate Cipro (3x MIC WT)

### Conclusions

- stochastic phenotype switching ubiquitous in microbes
- possible roles: division of labour, bet hedging
- here: provides a way to circumvent fitness valleys by switching to an alternate fitness landscape
- speed gain: potentially orders of magnitude
- some evidence that it may be relevant for antimicrobial resistance evolution

![](_page_19_Figure_6.jpeg)

Genotype Space

#### Paper:

A. C. Tadrowski, M. R. Evans, and B. Waclaw, Scientific Reports 8, 8941 (2018).

#### Also

Bacterial growth: A statistical physicist's guide RJ Allen, B Waclaw, *Reports on Progress in Physics* 82 (1), 016601 (2018)