Phenotypic switching as a mechanism to circumvent fitness valleys

Bartek Waclaw

School of Physics and Astronomy University of Edinburgh

and

Dioscuri Centre for Physics and Chemistry of Bacteria Institute of Physical Chemistry PAS Warsaw, Poland

Acknowledgments

Andrew Tadrowski Martin Evans

THE ROYAL
SOCIETY OF EDINBURGH

Motivation: bacterial infections

Responsible for 1.3M deaths/year worldwide. May increase to 10M/y by 2050.

Resistance to antibiotics is a concern

Better prevention, diagnostics, and treatment required

What we do: **quantitative understanding of bacterial infections and antibiotic resistance**

- modelling
- experiments

Rapid evolution of resistance in drug gradients – insight from modelling

M. Baym, et al, Science **353**, 1147 (2016)

P.Greulich, B. Waclaw, R. Allen, Phys. Rev. Lett. **109**, 088101 (2012)

low drug concentration

high drug concentration

Phenotype switching

Phenotypic plasticity: capacity to change phenotype in response to environmental changes – without change to its genotype. All organisms do it.

Stochastic phenotype switching (SPS) occurs without any sensing mechanism - this is what we're interested in.

A `bet-hedging' strategy: beneficial for when environmental changes are frequent and unpredictable.

SPS is commonly observed in bacteria

experimental

- **H. J. E. Beaumont, et al., Nature 462, 90 (2009).**
- Y. Ito, et al., Mol Syst Biol **5**, 264 (2009).
- A. Solopova, et al., PNAS **111**, 7427 (2014).
- M. Arnoldini, et al., PLoS Biol **12**, e1001928 (2014).
- H. Hasman, et al., Journal of Bacteriology **182**, 1089 (2000). theory
- E. Kussell and S. Leibler, Science **309**, 2075 (2005).
- P. Ashcroft, et al., J. R. Soc. Interface **11**, 20140663 (2014).
- A. Taitelbaum, et al., Phys. Rev. Lett. **125**, 048105 (2020). theory+experiment
- N. Q. Balaban, et al., Science **305**, 1622 (2004).
- M. Acar, et al., Nature Genetics **40**, 471 (2008).

SPS example – bacterial persistence

Escherichia coli can switch between normal and persister states. Persister cells grow at a slower rate than the normal cells but are resistant to antibiotics

Balaban et al. Science 2004

Could persistence speed up evolution by providing a "safe haven" for bacteria to try out different mutations?

More generally: Could phenotype switching help to avoid fitness valleys?

A 1-slide summary of this talk:

genotype space

A simple model

More formally…

State: $C = (n_{1A}, n_{2A}, n_{3A}, n_{1B}, n_{2B}, n_{3B})$, $n_i = 0, ..., K$

Master equation

$$
\frac{\partial P(C,t)}{\partial t} = \sum_{C' \neq C} (P(C',t)w(C' \to C) - P(C,t)w(C \to C'))
$$

 $w(C \rightarrow C')$ are transition rates, for example

$$
w(\{n_{1A},...,n_{1B},...\}) \to \{n_{1A} - 1,...,n_{1B} + 1,...\}) = \alpha
$$
 switching
\n
$$
w(\{n_{1A},...\}) \to \{n_{1A} + 1,...)
$$

\netc. = $(1 - \mu)r_{1A} \left(1 - \frac{N}{K}\right)$ growth

phenotype

We simulate the model on a computer using different techniques depending on which observable we are interested in (exact kinetic MC, tau-leaping) Approximate analytic solutions available in some regimes (won't talk much about it)

Results for no fitness cost for the 2nd phenotype $(c = 0)$

We measure the time to obtain a single organism of the best-adapted phenotype 3A Small system (K=100), low mutation ($\mu = 10^{-5}$... 10^{-2} , $K \mu < 1$), $\delta = 0.4$, $d = 0.1$

Time to adaptation decreases monotonically in the absence of $2A \leftarrow 2B$ transition

 10^{-4}

 10^{-2}

 α

 10^{4}

 10^{-8}

 10^{-6}

Reason: rapid transitions $2A \leftarrow$ \rightarrow 2B (absent here) create an effective fitness valley at genotype 2

Fastest trajectories avoid the fitness valley

Time to adaptation for different trajectories

tunnelling through the barrier for **small** switching to the alternate phenotype B for **intermediate** T $T_A T_B$ **large** α : tunnelling through the $T=$ "effective" fitness valley made of $T_A + T_B$ combined 2A and 2B: 10^8 $T_{\text{comb,ST}} \approx \frac{1}{(1-d)K\mu^2 d(1/(1-r_{2,\text{comb}})-1)}$ 10^{7} $r_{2,\text{comb}} = n_{2\text{A}}r_{2\text{A}} + n_{2\text{B}}r_{2\text{B}}$ $10⁶$ $= \frac{(d+\alpha)(2-\delta)+\sqrt{\delta^2(\alpha+d)^2-4\alpha^2(\delta-1)}}{2(2\alpha+d)}$ 10^{-3} 10^{-9} 10^{-5} 10^{-7} 10^{-1} 10

Phenotype switching is favoured in a large region of parameter space

Here $\mu = 10^{-6}$, $\alpha \sim 10^{-3}$, $K \sim 10^{9}$ - biologically realistic values

Switching phenotypes remains advantageous also for fitness cost $c > 0$

- phenotype switching still reduces time to adaptation
- no optimal switching rate for larger c

Experimental evidence?

Idealized model, not meant to reproduce any specific experiment

However: some evidence that a similar mechanism may be relevant for the antibiotic ciprofloxacin

J. Bos, Q. Zhang, S. Vyawahare, E. Rogers, S. M. Rosenberg, and R. H. Austin, *Emergence of Antibiotic Resistance from Multinucleated Bacterial Filaments*, PNAS 2015.

Evolution of resistance to the antibiotic ciprofloxacin

5 specific mutations increase resistance of *E. coli* by 3 orders of magnitude We represent mutants by binary sequences:

The fitness of mutants depends on antibiotic concentration

the curve

growth rate(antibiotic conc.)

has the same shape for all mutants

S. G. Das, et al., ELife **9**, e55155 (2020).

Fitness landscapes

intermediate Cipro (3x MIC WT)

Conclusions

- stochastic phenotype switching ubiquitous in microbes
- possible roles: division of labour, bet hedging
- here: **provides a way to circumvent fitness valleys by switching to an alternate fitness landscape**
- speed gain: potentially orders of magnitude
- some evidence that it may be relevant for antimicrobial resistance evolution

Genotype Space

Paper:

A. C. Tadrowski, M. R. Evans, and B. Waclaw, Scientific Reports **8**, 8941 (2018).

Also

Bacterial growth: A statistical physicist's guide RJ Allen, B Waclaw, *Reports on Progress in Physics* 82 (1), 016601 (2018)