# A thermodynamic threshold for Darwinian evolution

**Evolution of Complexity from the Statistical Physics Perspective, June 2022** 

Plantae Protista Animalia Spongine Мухо-Vertebrata Cormophyta Auto mycetes Petro - | spengiae Amniota Pteridophyta haohyta Phytarym Articulata sporgiae epidophyta AvecAntoropoda Sam/ Крізосигрем Trichis Vilices Anze lida Bryophyta Khizopoda (The Fuccideae Phyllo Radiolaria Scole cida 1798/2442 uphyside Acvitaria kontaria Ristala 1000 Nener-11. Hoxery / toda. Flagellata Florideae Echino-17 England Volvaz Nieti . dermata -Holothuriae Chara-Behinida-Crinonda Asterido Protoplas Mollusca Otoar Diatomeae Arrillat Armilate Vitlalag taga Coelente-Noneres complayo rata Tra Protogenes Postonialo Potnace Samppells lenkar Volumem Archephylum vegetabil Archephylun Archephylan protisticum animale Pr sta Plantae Animalt Peld: pmnq (19 Stämme) I, Fell: pxyq (J Stamme) II, Fell: pstq (J Stamme) Monophyletischer Radix Moneres Stammbaum & Organismen stellen I möstiche Fälle der oommunis autogooo entropies and generated you niversation Gene Organismorum Ernst Hasskel. Jona, 1866

Artemy Kolchinsky artemyk@gmail.com

Universal Biology Institute, University of Tokyo

# Roadmap

- Introduction: thermodynamics tradeoffs and thresholds
- Main result
- Illustration with data + example
- Other issues + future work

# Introduction

#### Thermodynamic tradeoffs and thresholds



#### A thermodynamic threshold for Darwinian evolution

Artemy Kolchinsky Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501

https://arxiv.org/abs/2112.02809



#### **Thermodynamic threshold for Darwinian evolution**

**Darwinian evolution**: when, in a population of replicators, replicators with higher fitness outcompete those with lower fitness

Selection coefficient  $s \in [-1,1]$ : measure of relative fitness difference between replicators (s = 0 for no difference)

"Strength of selection" can be quantified via a lower bound on *s*, the critical selection coefficient that is "visible" to selection

# Finite population sizes $s \gg 1/N_{\rm eff}$



Finite mutation rate  $\mu$  (Eigen's "error catastrophe")

 $s > \mu$ 



Preview of main result: a thermodynamic threshold for molecular replicators

 $s \ge e^{-\sigma}$ 

- s : selection coefficient (1 f'/f)(between 0 and 1)
- $\sigma$  : Gibbs free energy dissipated by fitter replicator (*kT*/copy)

#### Why do we care?

#### **iScience**



Perspective Thresholds in Origin of Life Scenarios Cycile Jaancolas,<sup>12</sup> Christophe Malaterre,<sup>3,4</sup> and Philippe Nghe<sup>1,4</sup>



|                                                                                                 |                                                           |                                                           | Experiment)                                                                               | Triggered the Transition<br>in an Origin of Life<br>Scenario                                                                                |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Chirality symmetry breaking<br>(Budle and Szostak, 2010;<br>Hawlaker and Blackmond,<br>2019)    | Racemic state of a solution                               | Homochiral state of a solution                            | Enantiomeric excess                                                                       | Presence of circularly<br>polarized light,<br>stereospecific<br>crystallization, isotopic<br>enartioselective initiators,<br>auto-ratalysis |
| Spontaneous<br>polymerization (Nonnard<br>et al., 2003, Deasive et al.,<br>2007; Lambert, 2008) | Solution of moromers                                      | Solution of polymers                                      | Concentrations of<br>monomers, chemical<br>activation                                     | Ponds evaporation, freeze-<br>thaw cycle, mineral surfaces,<br>themophereais in<br>hydrothermal vents, in situ<br>closure in vesicles       |
| Self-assembly of<br>compartments (Bachmann<br>et al., 1992; Todisco et al.,<br>2018)            | Solution of free constituents                             | Solution of melecular set-<br>assembled compartments      | Concentration of the<br>constituents, salinity, pH,<br>temperature, molecular<br>crowsing | Increase of CO <sub>2</sub><br>concentration, day-night<br>temperature variations, wet-<br>diry cycles                                      |
| Catalytic cleaure threshold<br>(Kauffman, 1986)                                                 | Solution of polymens with<br>few catalysts                | Closed collective<br>autocatalytic sets                   | Number of catalysts and<br>reactions catalyzed                                            | Sportaneous and effective<br>synthesis of diverse<br>polymens                                                                               |
| Error dineshold (Bigen,<br>1971; Takeschi e: al., 2017)                                         | Unreplicated polymers                                     | Polymens cupled by<br>template-based replication          | Selective advantage,<br>copying error rate, polymens<br>length                            | Selection of compariments,<br>genotype-phenotype<br>redundancy, mineral<br>surfaces                                                         |
| Decay threshold (King,<br>1977; Szathmáry, 2006;<br>Vasas et el., 2013)                         | No autocatalysis                                          | Autocatalytic set                                         | Kinetics, network topology,<br>feedstock concentration                                    | Transient depletion in<br>reactants er rare product of<br>pre-existing reactiona                                                            |
| Darwinian threshold<br>(Woese, 2002; Goldenfeld<br>et al., 2017)                                | Progenotes with high<br>Horizontal Gene Transfer<br>(HGI) | Speciated individuals with<br>high Vertical Gene Transfer | HGT strength (i.e.,<br>competence), fitness                                               | Decrease in cell density,<br>nutrient limitation, alkaline<br>shift, toxic chemicals release                                                |

System State after

Variables Triggering the Naturalized Variables

Table 1. Examples of Thresholds in Origin of Life Scenarios

Threshold Examples

System State before

Systems states before and after crossing the threshold are listed, along with corresponding physico-chemical variables and prebiotically relevant prenomena.

Setup Assumptions Definition of fitness (Non)elementary replicators Derivation of main results

- Reaction volume contains *n* types of replicators
- Replicators flow out at dilution rate  $\phi$
- Consider (deterministic)
   concentrations in steady state





geocurrents.i

Each replicator X undergoes autocatalytic reaction:

 $X + \sum_{i} \alpha_{i} A_{i} \rightleftharpoons X + X + \sum_{i} \beta_{i} A_{i}$ 

Gibbs free energy of reaction  $\sigma = -\ln x + \sum_{i} (\alpha_i - \beta_i) \, \ln a_i - \Delta G^{\circ}$  Autocatalytic current  $J(x, \mathbf{a}, \phi)$ Outflow and autocatalysis balance

 $\phi x = J(x, \mathbf{a}, \phi)$ 

 $\phi$ : dilution rate

x: concentration of replicator X

 $\mathbf{a} = (a_1, \dots, a_k)$ : concentrations of substrate/waste  $A_1, \dots, A_k$ 



$$J^{+}$$

$$X + \sum_{i} \alpha_{i} A_{i} \rightleftharpoons X + X + \sum_{i} \beta_{i} A_{i}$$

$$J^{-}$$

 $J(x, \mathbf{a}, \phi)$ 



| Setup | Assumptions | Definition of fitness | (Non)elementary replicators | Derivation of main results |
|-------|-------------|-----------------------|-----------------------------|----------------------------|
|-------|-------------|-----------------------|-----------------------------|----------------------------|

Fitness of replicator: maximum per-capita growth rate

 $f(\mathbf{a}, \phi) := \sup_{x>0} J(x, \mathbf{a}, \phi)/x$ 

 $J(x, \mathbf{a}, \phi) = \kappa^+(\mathbf{a}, \phi)x - \kappa^-(\mathbf{a}, \phi)x^2$ 

 $\phi x = J(x, \mathbf{a}, \phi)$ 

Fitness is the forward rate constant  $f(\mathbf{a},\phi) = \kappa^+(\mathbf{a},\phi)$ 

If  $\phi > f(\mathbf{a}, \phi)$ , replicator must be extinct, x = 0If  $\phi < f(\mathbf{a}, \phi)$ , there is non-extinct steady state, x > 0



| Setup | Assumptions | Definition of fitness | (Non)elementary replicators | Derivation of main results |
|-------|-------------|-----------------------|-----------------------------|----------------------------|
|-------|-------------|-----------------------|-----------------------------|----------------------------|





$$\sigma \geq -\ln\left(1 - \frac{\phi}{f}\right)$$

Dissipation 
$$\geq -\ln\left(1 - \frac{\text{Actual growth rate}}{\text{Max growth rate}}\right)$$

| Setup | Assumptions | Definition of fitness | (Non)elementary replicators | Derivation of main results |
|-------|-------------|-----------------------|-----------------------------|----------------------------|
|-------|-------------|-----------------------|-----------------------------|----------------------------|

Consider two replicators:

- 1. Replicator X with fitness f that is not extinct, x > 0
- 2. Replicator X' with fitness f' that is extinct, x' = 0

If  $\phi > f'$ , replicator X' must be extinct, x' = 0If  $\phi < f'$ , there is non-extinct steady state, x' > 0

$$\sigma \geq -\ln\left(1 - \frac{\phi}{f}\right)$$

$$\sigma \ge -\ln\left(1 - \frac{f'}{f}\right)$$
$$= -\ln s$$



$$s := 1 - f'/f$$

# **Illustration of result**

#### **Comparison to real-world replicators**

A thermodynamic bound on selection for molecular replicators

 $s \ge e^{-\sigma}$ 



Self-replicating prion



3.5 kT Baskakov et al, *J Bio Chem*, 2001

Self-replicating RNA Lincoln & Joyce, Science, 2009



5 kT Jülicher & Bruinsma, *Biophys J*, 1998

Self-replicating peptide Lee et al, Nature, 1996



12 *kT* Wang et al, *Chem: Asian J*, 2011

#### **Example: elementary replicators in a chemostat**

#### **Example: elementary replicators in a chemostat**



 $\sigma \geq -\ln s$ 

$$s_i = 1 - f_i / f_1 = 1 - k_i / k_1$$

 $\sigma_1 \ge -\ln s_i = -\ln(1 - k_i/k_1)$ 

 $\sigma$  increases with the dilution rate  $\phi$ 

## **Other issues + future work**

#### **Collectively autocatalytic systems (autocatalytic sets)**

#### **Collectively autocatalytic systems (autocatalytic sets)**





Self-replicating RNA Lincoln & Joyce, Science, 2009



Fitness of a cross-catalytic cycle  $f(\mathbf{a}, \phi) := \sup_{\lambda \ge 0, \mathbf{z} \in \mathbb{R}^m_+} \lambda$  such that  $J_j(\mathbf{z}, \mathbf{a}, \phi) = \lambda z_j$ 

$$f(\mathbf{a}, \phi) = \prod_{j} \kappa_{j}^{+} (\mathbf{a}, \phi)^{1/m}$$

$$\langle \sigma \rangle = \frac{1}{m} \sum_{j} \sigma_{j}(\mathbf{z}, \mathbf{a})$$

$$\langle \sigma \rangle \geq -\ln\left(1 - \frac{\phi}{f}\right)$$

$$\left< \sigma \right> \geq -\ln\left(1 - \frac{f'}{f}\right)$$

#### **Future work**

1. Stochastic fluctuations

3. More general topologies for nonelementary replicators and for autocatalytic sets

2. Mutations

4. Second-order replicators





## Thank you!

artemyk@gmail.com

arxiv.org/abs/2112.02809