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Thermodynamic threshold for Darwinian evolution

Darwinian evolution: when, in a population 
of replicators, replicators with higher fitness 

outcompete those with lower fitness

“Strength of selection” can be quantified via a lower bound on , 
the critical selection coefficient that is “visible” to selection

s

Selection coefficient :  
measure of relative fitness difference 

between replicators (  for no difference)

s ∈ [−1,1]

s = 0

Finite population sizes

s ≫ 1/Neff

Finite mutation rate 

(Eigen’s “error catastrophe”)





μ

s > μ

μ
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I. Introduction 

1.1. ,,Cause and Effect" 

The question about the origin of life often appears as a 
question a b o u t "  cause and effect". Physical theories of 
macroscopic processes usually involve answers to such 
questions, even if a statistical interpretation is given to 
the relation between "cause"  and "effect".  I t  is 
mainly due to the nature of this question that many 
scientists believe that  our present physics does not 
offer any obvious explanation for the existence of life, 

* Par t ly  presented as the " R o b b i n s  Lec tu res"  a t  Pomona  
College, California, in spring t970. 

33a Naturwissenschaften t97t 

which even in its simplest forms always appears to be 
associated with complex macroscopic (i. e. multimolec- 
ular) systems, such as the living cell. 
As a consequence of the exciting discoveries of 
"molecular biology", a common version of the above 
question is: Which came first, the protein or the nucleic 
acid ? - -a  modern variant of the old "chicken-and-the-  
egg" problem. The term "' first" is usually meant to 
define a causal rather than a temporal relationship, and 
the words "pro te in"  and "nucleic acid" may be sub- 
stituted by " funct ion"  and "information".  The 
question in this form, when applied to the interplay of 
nucleic acids and proteins as presently encountered in 
the living cell, leads ad absurdum, because " func t ion"  
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Preview of main result:  
a thermodynamic threshold 

for molecular replicators 
 

s ≥ e−σ

  : selection coefficient (  )

      (between 0 and 1) 

 : Gibbs free energy dissipated 
      by fitter replicator ( /copy) 
      

s 1 − f′￼/f

σ
kT



Why do we care?

Goldenfeld et al,  2017
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This other replicator may copy itself via an elementary auto-
catalytic reaction, a multistep autocatalytic mechanism, or a
cross-catalytic cycle. Suppose that selection is strong enough
so that this replicator is driven to extinction, so that � � f 0(a).
Plugging this into Eq. (19) gives

h�i � � ln(1� f 0(a)/f(a)). (20)

We emphasize that Eqs. (19) and (20) bound the Gibbs
free energy of the average reaction in the cross-catalytic cycle.
Thus, the thermodynamic cost of achieving a given selection
coe�cient s in a cross-catalytic cycle grows (at least) linearly
with the size of the cycle.

V. APPLICATION: DARWINIAN EVOLUTION IN A
CHEMOSTAT

We illustrate our results on a simple model of autocatalytic
replicators in a chemostat, shown schematically on the left
side of Fig. 3. We consider a reaction volume in which a
substrate species A flows in with concentration � and rate �,
while all species flow out with dilution rate �. The volume can
contain up to n replicator species, indicated as X1, . . . , Xn,
where each Xi replicates from substrate A via an autocatalytic
reaction Xi + A � Xi + Xi. This model is inspired by the
standard chemostat setup used in microbial ecology [45, 53],
evolutionary biology [54, 55], and origin of life studies [56,
57]. It may also represent chemical reactions under natural
conditions, e.g., in a lake that contains autocatalytic replicators
and is fed by a substrate-rich stream.

Suppose that all autocatalytic reactions are elementary and
have mass action kinetics. The dynamics of replicator and

ϕ

ϕ

γ

Figure 3. Left: a chemostat setup with dilution rate �. Grey circles
indicate substrate, red and blue circles are autocatalytic replicators.
Right: a system of 4 competing replicators. The top plot shows
the order parameter of replicator concentrations as a function of the
dilution rate �; kinks correspond to extinction events. The bottom
plot shows the Gibbs free energy of replication; extinctions occur
when the Gibbs free energy of the fittest replicator X1 crosses the
(minus logarithm of the) corresponding selection coe�cients, as in
Eq. (12).

substrate concentrations are then given by

ẋi(t) = kixi(t)[a(t)� e�G�
i xi(t)]� �xi(t)

ȧ(t) = �(� � a(t))�
X

i

kixi(t)[a(t)� e�G�
i xi(t)],

(21)

where ki is a rate constant and ��G�
i is the standard Gibbs

free energy of the reaction Xi +A � Xi +Xi.
This type of dynamical system was studied as a model of

early evolution by Schuster and Sigmund [29] (see also [30]),
who showed that it has a unique steady state which governs
long-term behavior. In our notation, this steady state is given
by the following set of coupled equations,

a = � �
X

i

xi, xi = max{0, e��G�
i (a� �/ki)}. (22)

(For more details, see Appendix D, where we also show how
that coupled equations in Eq. (22) can be solved by evaluating
at most n closed-form expressions.)

Although the replicators do not have a direct interaction
under the dynamics of Eq. (21), they experience an e�ec-
tive interaction due to competition for the shared substrate
A. In fact, dynamics such as Eq. (21) are closely related to
models of resource competition used in mathematical ecology
and evolutionary biology [45, 53, 54]. These dynamics can
also be mapped onto a Lotka-Volterra system, a classic model
of biological competition (see Appendix D). The strength of
selection grows with increasing dilution rate � and/or decreas-
ing the inflow substrate concentration �, eventually driving
the replicators to extinction one-by-one in order of decreasing
ki. In particular, in the steady state specified by Eq. (22),
replicator Xi is driven to extinction once

�

�
 k�1

i +
X

j:kj�ki

e��G�
j (k�1

i � k�1
j ). (23)

(For details, see Appendix D.)
We now consider a concrete example of 4 replicators with

rate constants (k1, k2, k3, k4) = (4, 3, 2, 1) and standard Gibbs
free energies ��G�

i 2 (1, 2, 3, 2.5). We fix the inflow con-
centration at � = 1 and vary the dilution rate �. In the top right
plot of Fig. 3, we show the Kullback-Leibler (KL) divergence
between the normalized steady-state concentrations and their
equilibrium values,

DKL =
X

i

xi

C
ln

xi/C

e��G�
i /Z

,

whereC =
P

i xi andZ =
P

i e
��G�

i are normalization con-
stants. Here DKL is an information-theoretic order parameter
which quantifies the strength of selection: it is 0 when repli-
cators are in their equilibrium concentrations, and grows large
when the population is concentrated on the fittest replicators.
In Fig. 3, this order parameter increases with �, exhibiting
kinks at three extinction events (corresponding to replicators
X4, X3,and X2, from left to right).

• Reaction volume contains  types of 
replicators


• Replicators flow out at dilution rate 


• Consider (deterministic) 
concentrations in steady state

n

ϕ

Each replicator  undergoes autocatalytic reaction: 
 

 

Gibbs free energy of reaction 
 

X
X + ∑i αiAi ⇄ X + X + ∑i βiAi

σ = − ln x + ∑i (αi − βi) ln ai − ΔG∘

Autocatalytic current 
 

 

Outflow and autocatalysis balance 
 

J(x, a, ϕ)

ϕx = J(x, a, ϕ)

: dilution rate              : concentration of replicator                : concentrations of substrate/waste ϕ x X a = (a1, …, ak) A1, …, Ak

Main results
Setup Assumptions Definition of fitness (Non)elementary replicators Derivation of main results



Main results
Setup Assumptions Definition of fitness (Non)elementary replicators Derivation of main results

: dilution rate              : concentration of replicator                : concentrations of substrate/waste ϕ x X a = (a1, …, ak) A1, …, Ak

Flux kinetics are “mass-action-like” 
 

J+ = κ+(a, ϕ)x
J− = κ−(a, ϕ)x2

Flux-force inequality 
 

σ ≥ ln
J+

J−

X + ∑i αiAi ⇄ X + X + ∑i βiAi J(x, a, ϕ) = J+ − J−

J+

J−



Fitness of replicator: maximum per-capita growth rate 
 

f(a, ϕ) := sup
x>0

J(x, a, ϕ)/x

Setup Assumptions Definition of fitness (Non)elementary replicators Derivation of main results

Main results

If , replicator must be extinct, 

If , there is non-extinct steady state, 

ϕ > f(a, ϕ) x = 0
ϕ < f(a, ϕ) x > 0

J(x, a, ϕ) = κ+(a, ϕ)x − κ−(a, ϕ)x2 ϕx = J(x, a, ϕ)

Fitness is the forward rate constant

f(a, ϕ) = κ+(a, ϕ)



κ+
eff(a, ϕ) = κ+

1 [κ−
1 (M + ϕI )−1

11 + 2κ+
m(M + ϕI )−1

m−1,1 − 1]
κ−

eff(a, ϕ) = κ−
m[2 − κ−

1 (M + ϕI )−1
m−1,m−1 + 2κ+

m(M + ϕI )−1
1,m−1]

9

reaction in Eq. (A1). Note that unlike the dilution rate �, the
degradation rate ⌘(a) can vary between replicators.

As in the main text, we assume that the autocatalytic current
J (x,a,�) satisfies Eqs. (5) and (6). Generalizing Eqs. (8)
and (9), we define the fitness of a replicator as its maximum
growth rate after discounting degradation,

f(a) := sup
��0,x>0

(J (x,a,�)� ⌘(a)x)/x.

Using a similar argument as in the main text, it can be shown
that the fitness obeys

f(a) = sup
��0

+(a,�)� ⌘(a). (A3)

We now show that Eq. (13) holds in the presence of degra-
dation. We start from the inequality

�(x,a) � � ln

✓
1� J (x,a,�)

+(a,�)x

◆
, (A4)

which appeared in the main text as Eq. (12). Note that
J (x,a,�)  +(a,�)x from Eq. (12) and non-negativity
of �(a,�), and that � ln(1� a�x

b�x ) is decreasing in x when
a  b. Combining with Eq. (A4) then gives

�(x,a) � � ln

✓
1� J(x,a)� ⌘(a)x

+(a,�)x� ⌘(a)x

◆
.

Combining this inequality with Eqs. (A2) and (A3) gives

�(x,a) � � ln(1� �/f(a)), (A5)

which recovers Eq. (13). The derivation of Eq. (14) follows as
in the main text.

Appendix B: Multistep autocatalytic reaction schemes

Here we show that the current across a multistep autocat-
alytic reaction mechanism, as in Eq. (7), satisfies Eqs. (5)
and (6). We also derive the expression for the fitness of a
multistep replicator, Eq. (11).

To begin, let yj indicate the steady-state concentrations of
the intermediate species Yj . Consider the j 2 {1, . . . ,m}
intermediate reaction in Eq. (7),

Yj�1 +
X

i

↵j,iAi � Yj +
X

i

�j,iAi,

where we use the convention Y0 = X and Ym = X + X .
The Gibbs free energy of this reaction is �j =

P
i(↵j,i �

�j,i) ln ai � �G�
j , where ��G�

j is the reaction’s standard
Gibbs free energy. We assume that intermediate reactions are
elementary and obey the flux-force relationship [36],

�j(x,y,a) = ln
+
j (a)yj�1

�
j (a)yj

j 2 {1, . . . ,m} (B1)

where y = (y1, . . . , ym�1), 
+
j (a) and �

j (a) are the forward
and backward (pseudo) rate constants, and again we use the
convention that y0 = x, ym = x2. The Gibbs free energy of
the overall autocatalytic reaction mechanism in Eq. (7), which
appears in Eq. (3), can be expressed as

�(x,a) =
X

j

�j(x,y,a) = � lnx+
mX

j=1

ln
+
j (a)

�
j (a)

. (B2)

We assume that the current of each intermediate elementary
reaction can be written as

Jj(x,y,a) = +
j (a)yj�1 � �

j (a)yj . (B3)

In addition, all chemical species flow out with dilution rate
�. In steady state, reaction currents and dilution current must
balance,

�yj = Jj(x,y,a)�Jj+1(x,y,a) j 2 {1..m�1} (B4)

Note that steady-state intermediate concentrations yi and in-
termediate currents Ji will generally depend on the dilution
rate � (we omit this dependence in our notation for simplicity).
The steady-state current across the overall autocatalytic reac-
tion mechanism in Eq. (7), which we indicate as J (x,a,�),
can be expressed in terms of intermediate currents as

J (x,a,�) = 2Jm(x,y,a)� J1(x,y,a) (B5)

= 2(+
m(a)ym�1 � �

m(a)x2)

�(+
1 (a)x� �

1 (a)y1).
(B6)

Eq. (B5) reflects the fact that the last reaction produces two
copies of X while the first reaction consumes one copy of X .
Eq. (B6) follows from Eq. (B3). We will assume through-
out that the overall current is non-negative, J(x,a,�) � 0,
meaning that there is a net production of replicators.

To show that J(x,a,�) satisfies Eqs. (5) and (6), first use
Eq. (B3) and y0 = x and ym = x2 to rewrite Eq. (B4) as a set
of m� 1 linear equations,

+
1 x = (�

1 + +
2 + �)y1 � �

2 y2

. . .

0 = �+
j yj�1 + (�

j + +
j+1 + �)yj � �

j+1yj+1

. . .

�
mx2 = �+

m�1ym�2 + (�
m�1 + +

m + �)ym�1,
(B7)

where for brevity, we write the rate constants as+/�, instead
of +(a)/�(a), leaving the dependence on a implicit. For
convenience, define the following (m� 1)⇥ (m� 1) matrix,

M =

2

664

�
1 + +

2 ��
2 0 0 0 . . .

�+
2 �

2 + +
3 ��

2 0 0 . . .
0 �+

3 �
3 + +

4 ��
3 0 . . .

. . . . . . . . . . . . . . . . . .

3

775 ,

which allows us to rewrite Eq. (B7) in matrix notation as

(M + �I)y = x+
1 e1 + x2�

mem�1, (B8)

2

as X , undergoes an autocatalytic reaction of the form

X +
X

i

↵iAi � X +X +
X

i

�iAi, (2)

where ↵i and �i indicate the stoichiometric coe�cients of
species A1, A2, . . . , which may serve as substrates or waste
products during replication. A simple special case of Eq. (2)
is autocatalysis from a single substrate, X + A � X + X ,
but many other schemes are also possible. We ignore the
uncatalyzed formation of replicator, such as

P
i ↵iAi �

X+
P

i �iAi, assuming that it occurs at a negligible rate. For
simplicity, we also ignore spontaneous degradation of replica-
tors (in Appendix A we show that our results still hold in the
presence of degradation).

It is important to emphasize that Eq. (2) can represent an
elementary autocatalytic reaction, or (as we discuss below)
a nonelementary reaction mechanism which proceeds via a
sequence of intermediate steps. In addition, further down
below, we consider a generalization of Eq. (2) to collectively
autocatalytic sets, where replication involves a cycle of cross-
catalytic reactions.

We focus primarily on (nonequilibrium) steady states. We
assume that steady-state molecular counts are su�ciently
large so that stochastic fluctuations can be ignored, and we
only consider deterministic concentrations. We use x and
a = (a1, a2, . . . ) to indicate the steady-state concentrations
of replicator X and substrate/waste species Ai respectively.
The Gibbs free energy of the (elementary or nonelementary)
autocatalytic reaction in Eq. (2) can be written as [36]

�(x,a) = � lnx+
X

i

(↵i � �i) ln ai ��G�, (3)

where ��G� is the standard Gibbs free energy of the reaction
(i.e., the Gibbs free energy of the reaction when all reactants
and products are at molar concentration 1). Note that, for nota-
tional convenience, we use the notation �, rather than the more
common ��G, and express � in units of kBT per replication
event, rather than J/mol. In principle, a reaction that releases
� of Gibbs free energy can be coupled to a thermodynami-
cally disfavored “uphill” reaction, and thereby do up to � of
chemical work [36]. Therefore, � represents the dissipated
potential for chemical work and it is a fundamental measure
of the “thermodynamic cost” of replication. We will refer to
�(x,a) as the Gibbs energy of replication.

We assume that in steady state, replicators flow out of the
reaction volume at dilution rate �. We use J (x,a,�) to indi-
cate the steady-state current across the autocatalytic reaction
in Eq. (2). The current may depend on the replicator concen-
tration x and the substrate/waste product concentrationsa, and
the dilution rate �. It may also depend on �, which can be use-
ful for analyzing nonelementary autocatalytic mechanisms, as
considered in Appendix B (the current will not depend on � for
elementary autocatalytic reactions). In steady state, replica-
tor concentration are constant, which means that autocatalytic
current and dilution current must balance,

�x = J (x,a,�). (4)

A

X

A1

X

A2

Figure 1. Examples of multistep autocatalytic reaction mechanisms.
Left: autocatalysis with binding, conversion, and unbinding steps;
Right: templated replication of a self-complementary dimer.

The steady state is nonequilibrium whenever � 6= 0 and x > 0,
since then there is a non-zero current across the autocatalytic
reaction.

We make two assumptions about the autocatalytic current J
in deriving our results. First, we assume that it can be written
in the following form:

J (x,a,�) = +(a,�)x� �(a,�)x2, (5)

where +(a,�) and �(a,�) are (pseudo) rate constants that
may depend on steady-state substrate/waste concentrations a
and the dilution rate � (but not on replicator concentrations x).
Eq. (5) implies that at low concentrations, the current is first-
order in replicator concentration, J (x,a,�) ⇡ +(a,�)x.
Second, we assume that the ratio of backward and forward
fluxes bound the Gibbs energy of replication [37],

�(x,a) � ln
+(a,�)x

�(a,�)x2
. (6)

When Eq. (6) is achieved with equality, it is known as the flux-
force relation, sometimes also called local detailed balance,
in the literature [38, 39]. The flux-force plays a key role in
nonequilibrium thermodynamics [36], since it permits one to
connect the dynamical properties of a chemical reaction (the
forward and backward fluxes) to its thermodynamic properties
(the Gibbs free energy).

When the reaction in Eq. (2) is elementary and has mass
action kinetics, the current can be written as J = k

Q
i a

↵i
i x�

ke�G� Q
i a

�i
i x2 for some constant k [36]. It is clear that this

current has the form of Eq. (5), and satisfies the flux-force
relation in Eq. (6) with equality.

In fact, Eq. (5) and Eq. (6), the weaker inequality version of
the flux-force relation, also hold for many kinds of nonelemen-
tary replication mechanisms, where the production of X +X
from X involves multiple reactions. In Appendix B, we con-
sider an autocatalytic reaction mechanism that involves a se-
quence of m elementary reactions,
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which is sometimes called an “autocatalytic cycle” in the lit-
erature [15, 40, 41]. Note that the intermediate reactions may
consume any number of substrate/waste species Ai, as in-
dicated by the stoichiometric coe�cients ↵j,i and �j,i. A
simple example of this scheme is a three-step catalytic mech-
anism with binding, conversion, and unbinding steps, shown
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�iAi, (2)

where ↵i and �i indicate the stoichiometric coe�cients of
species A1, A2, . . . , which may serve as substrates or waste
products during replication. A simple special case of Eq. (2)
is autocatalysis from a single substrate, X + A � X + X ,
but many other schemes are also possible. We ignore the
uncatalyzed formation of replicator, such as

P
i ↵iAi �

X+
P

i �iAi, assuming that it occurs at a negligible rate. For
simplicity, we also ignore spontaneous degradation of replica-
tors (in Appendix A we show that our results still hold in the
presence of degradation).

It is important to emphasize that Eq. (2) can represent an
elementary autocatalytic reaction, or (as we discuss below)
a nonelementary reaction mechanism which proceeds via a
sequence of intermediate steps. In addition, further down
below, we consider a generalization of Eq. (2) to collectively
autocatalytic sets, where replication involves a cycle of cross-
catalytic reactions.

We focus primarily on (nonequilibrium) steady states. We
assume that steady-state molecular counts are su�ciently
large so that stochastic fluctuations can be ignored, and we
only consider deterministic concentrations. We use x and
a = (a1, a2, . . . ) to indicate the steady-state concentrations
of replicator X and substrate/waste species Ai respectively.
The Gibbs free energy of the (elementary or nonelementary)
autocatalytic reaction in Eq. (2) can be written as [36]

�(x,a) = � lnx+
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i

(↵i � �i) ln ai ��G�, (3)

where ��G� is the standard Gibbs free energy of the reaction
(i.e., the Gibbs free energy of the reaction when all reactants
and products are at molar concentration 1). Note that, for nota-
tional convenience, we use the notation �, rather than the more
common ��G, and express � in units of kBT per replication
event, rather than J/mol. In principle, a reaction that releases
� of Gibbs free energy can be coupled to a thermodynami-
cally disfavored “uphill” reaction, and thereby do up to � of
chemical work [36]. Therefore, � represents the dissipated
potential for chemical work and it is a fundamental measure
of the “thermodynamic cost” of replication. We will refer to
�(x,a) as the Gibbs energy of replication.

We assume that in steady state, replicators flow out of the
reaction volume at dilution rate �. We use J (x,a,�) to indi-
cate the steady-state current across the autocatalytic reaction
in Eq. (2). The current may depend on the replicator concen-
tration x and the substrate/waste product concentrationsa, and
the dilution rate �. It may also depend on �, which can be use-
ful for analyzing nonelementary autocatalytic mechanisms, as
considered in Appendix B (the current will not depend on � for
elementary autocatalytic reactions). In steady state, replica-
tor concentration are constant, which means that autocatalytic
current and dilution current must balance,

�x = J (x,a,�). (4)
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Figure 1. Examples of multistep autocatalytic reaction mechanisms.
Left: autocatalysis with binding, conversion, and unbinding steps;
Right: templated replication of a self-complementary dimer.

The steady state is nonequilibrium whenever � 6= 0 and x > 0,
since then there is a non-zero current across the autocatalytic
reaction.
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in deriving our results. First, we assume that it can be written
in the following form:
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where +(a,�) and �(a,�) are (pseudo) rate constants that
may depend on steady-state substrate/waste concentrations a
and the dilution rate � (but not on replicator concentrations x).
Eq. (5) implies that at low concentrations, the current is first-
order in replicator concentration, J (x,a,�) ⇡ +(a,�)x.
Second, we assume that the ratio of backward and forward
fluxes bound the Gibbs energy of replication [37],
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When Eq. (6) is achieved with equality, it is known as the flux-
force relation, sometimes also called local detailed balance,
in the literature [38, 39]. The flux-force plays a key role in
nonequilibrium thermodynamics [36], since it permits one to
connect the dynamical properties of a chemical reaction (the
forward and backward fluxes) to its thermodynamic properties
(the Gibbs free energy).

When the reaction in Eq. (2) is elementary and has mass
action kinetics, the current can be written as J = k
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i x2 for some constant k [36]. It is clear that this

current has the form of Eq. (5), and satisfies the flux-force
relation in Eq. (6) with equality.

In fact, Eq. (5) and Eq. (6), the weaker inequality version of
the flux-force relation, also hold for many kinds of nonelemen-
tary replication mechanisms, where the production of X +X
from X involves multiple reactions. In Appendix B, we con-
sider an autocatalytic reaction mechanism that involves a se-
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erature [15, 40, 41]. Note that the intermediate reactions may
consume any number of substrate/waste species Ai, as in-
dicated by the stoichiometric coe�cients ↵j,i and �j,i. A
simple example of this scheme is a three-step catalytic mech-
anism with binding, conversion, and unbinding steps, shown
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event, rather than J/mol. In principle, a reaction that releases
� of Gibbs free energy can be coupled to a thermodynami-
cally disfavored “uphill” reaction, and thereby do up to � of
chemical work [36]. Therefore, � represents the dissipated
potential for chemical work and it is a fundamental measure
of the “thermodynamic cost” of replication. We will refer to
�(x,a) as the Gibbs energy of replication.

We assume that in steady state, replicators flow out of the
reaction volume at dilution rate �. We use J (x,a,�) to indi-
cate the steady-state current across the autocatalytic reaction
in Eq. (2). The current may depend on the replicator concen-
tration x and the substrate/waste product concentrationsa, and
the dilution rate �. It may also depend on �, which can be use-
ful for analyzing nonelementary autocatalytic mechanisms, as
considered in Appendix B (the current will not depend on � for
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The steady state is nonequilibrium whenever � 6= 0 and x > 0,
since then there is a non-zero current across the autocatalytic
reaction.

We make two assumptions about the autocatalytic current J
in deriving our results. First, we assume that it can be written
in the following form:

J (x,a,�) = +(a,�)x� �(a,�)x2, (5)

where +(a,�) and �(a,�) are (pseudo) rate constants that
may depend on steady-state substrate/waste concentrations a
and the dilution rate � (but not on replicator concentrations x).
Eq. (5) implies that at low concentrations, the current is first-
order in replicator concentration, J (x,a,�) ⇡ +(a,�)x.
Second, we assume that the ratio of backward and forward
fluxes bound the Gibbs energy of replication [37],

�(x,a) � ln
+(a,�)x
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. (6)

When Eq. (6) is achieved with equality, it is known as the flux-
force relation, sometimes also called local detailed balance,
in the literature [38, 39]. The flux-force plays a key role in
nonequilibrium thermodynamics [36], since it permits one to
connect the dynamical properties of a chemical reaction (the
forward and backward fluxes) to its thermodynamic properties
(the Gibbs free energy).

When the reaction in Eq. (2) is elementary and has mass
action kinetics, the current can be written as J = k
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current has the form of Eq. (5), and satisfies the flux-force
relation in Eq. (6) with equality.

In fact, Eq. (5) and Eq. (6), the weaker inequality version of
the flux-force relation, also hold for many kinds of nonelemen-
tary replication mechanisms, where the production of X +X
from X involves multiple reactions. In Appendix B, we con-
sider an autocatalytic reaction mechanism that involves a se-
quence of m elementary reactions,
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erature [15, 40, 41]. Note that the intermediate reactions may
consume any number of substrate/waste species Ai, as in-
dicated by the stoichiometric coe�cients ↵j,i and �j,i. A
simple example of this scheme is a three-step catalytic mech-
anism with binding, conversion, and unbinding steps, shown
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Example: elementary replicators in a chemostat

X1 + A ⇄ X1 + X1

X2 + A ⇄ X2 + X2

X3 + A ⇄ X3 + X3

X4 + A ⇄ X4 + X4

Steady state:

5

to rewrite the fitness by solving for steady-state concentra-
tions z. We combine Eq. (16) with �zj = Jj(z,a,�) and
then divide both sides by +

j (a,�)zj�1zj to give z�1
j =

z�1
j�1�/

+
j (a,�) + �

j (a,�)/
+
j (a,�). This is a first-order

linear recurrence for z�1
j , which can be solved using standard

methods to give

zj =
��m

Qm
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+
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Pj
k=j�m+1 �

�k�
k (a,�)

Qk�1
l=j�m+1 

+
l (a,�)

, (19)

where all indexes are modn (for detials, see Appendix C).
A strictly positive steady state zj > 0 exists if and only
if the numerator of this equation is positive, implying that
� <

Qm
j=1 

+
j (a,�)

1/m. Plugging into Eq. (18) and rear-
ranging implies that the fitness of a cross-catalytic cycle is the
maximum geometric mean of the forward rate constants,

f(a) = sup
��0

Y

j

+
j (a,�)

1/m. (20)

We now generalize our main results, Eqs. (13) and (14),
to cross-catalytic cycles. Note that �j(x,a) � � ln(1 �
�/+

j (a,�)) for all j, which follows by combining Eqs. (16)
and (17) with the steady-state condition �zj = Jj(x,a,�) and
rearranging. The average Gibbs free energy of a reaction in
the cross-catalytic cycle can then be written as

h�i = 1

m

X

j
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m

X

j

ln
⇣
1� �
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⌘
. (21)

We can further bound the right hand side by first using Jensen’s
inequality and then using the AM-GM inequality,
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Finally, using the definition of fitness in Eq. (20) gives

h�i � � ln(1� �/f(a)). (22)

This result, which is a version of Eq. (13) for cross-catalytic cy-
cles, bounds the average Gibbs free energy of a cross-catalytic
reaction via the dilution rate and replicator fitness.

We now derive a bound on the strength of selection for
cross-catalytic cycles, analogous to Eq. (14). Suppose there
is some other replicator X 0 with lower fitness f 0(a) < f(a).
This other replicator may copy itself via an elementary auto-
catalytic reaction, a multistep autocatalytic mechanism, or a
cross-catalytic cycle. Suppose also that f 0(a)  �, mean-
ing that this replicator is driven to extinction in steady state.
Plugged into Eq. (22), this gives

h�i � � ln(1� f 0(a)/f(a)). (23)

We emphasize that Eqs. (22) and (23) bound the Gibbs free
energy of the average reaction in the cross-catalytic cycle.
Thus, the thermodynamic cost of achieving a given selection
coe�cient s in a cross-catalytic cycle grows (at least) linearly
with the size of the cycle.

V. APPLICATION: DARWINIAN EVOLUTION IN A
CHEMOSTAT

We illustrate our results on a simple model of autocatalytic
replicators in a chemostat. We consider a reaction volume in
which a substrate species A flows in with concentration � and
rate �, while all species flow out with dilution rate �. The
volume can contain up to n replicator species, indicated as
X1, . . . , Xn, where each Xi replicates from substrate A via
an autocatalytic reaction Xi + A � Xi +Xi. This model is
inspired by the standard chemostat setup, as used in microbial
ecology [46, 54], evolutionary biology [55, 56], and origin of
life studies [57, 58]. This model may also represent natural
conditions, e.g., a lake that contains autocatalytic replicators
and is fed by a substrate-rich stream.

We suppose that all autocatalytic reactions are elementary
and have mass action kinetics. The dynamics of replicator and
substrate concentrations are given by

ẋi(t) = kixi(t)[a(t)� e�G�
i xi(t)]� �xi(t)

ȧ(t) = �(� � a(t))�
X

i

kixi(t)[a(t)� e�G�
i xi(t)],

(24)

where ki is a rate constant and ��G�
i is the standard Gibbs

free energy of the reaction Xi +A � Xi +Xi.
This type of dynamical system was studied by Schuster and

Sigmund [29] (see also [30]). They showed that it has a unique
steady state which governs long-term behavior, given by the
following set of coupled equations,

a = � �
X

i

xi, xi = max{0, e��G�
i (a� �/ki)}. (25)

(For more details, see Appendix D, where we also show how
the coupled equations in Eq. (25) can be solved by evaluating
at most n closed-form expressions.)

Although the replicators do not interact directly under the
dynamics of Eq. (24), they do experience an e�ective inter-
action due to competition for the shared substrate A. In
fact, dynamics such as Eq. (24) are closely related to mod-
els of resource competition used in mathematical ecology and
evolutionary biology [46, 54, 55]. These dynamics can also
be mapped onto a competitive Lotka-Volterra system, as dis-
cussed in Appendix D. In that appendix, we show that the
strength of selection grows with increasing dilution rate �
and/or decreasing the inflow substrate concentration �, even-
tually driving the replicators to extinction one-by-one in order
of increasing ki. In the steady state specified by Eq. (25),
replicator Xi becomes extinct once

�

�
 k�1

i +
X

j:kj�ki

e��G�
j (k�1

i � k�1
j ). (26)

We now consider a concrete example of 4 replicators with
rate constants (k1, k2, k3, k4) = (4, 3, 2, 1) and standard Gibbs
free energies ��G�

i given by (1, 2, 3, 2.5). We calculate
steady-state concentrations of the 4 replicators at di�erent

 increases with the dilution rate σ ϕ

fi = kia

si = 1 − fi /f1 = 1 − ki /k1

σi = ln
a
xi

− ΔG∘
i

σ1 ≥ − ln si = − ln(1 − ki /k1)

Schuster and Sigmund, Dynamics of Evolutionary Optimization, 
Berichte der Bunsengesellschaft für physikalische Chemie, 1985
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to rewrite the fitness by solving for steady-state concentra-
tions z. We combine Eq. (16) with �zj = Jj(z,a,�) and
then divide both sides by +
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where all indexes are modn (for detials, see Appendix C).
A strictly positive steady state zj > 0 exists if and only
if the numerator of this equation is positive, implying that
� <

Qm
j=1 
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j (a,�)

1/m. Plugging into Eq. (18) and rear-
ranging implies that the fitness of a cross-catalytic cycle is the
maximum geometric mean of the forward rate constants,
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We now generalize our main results, Eqs. (13) and (14),
to cross-catalytic cycles. Note that �j(x,a) � � ln(1 �
�/+

j (a,�)) for all j, which follows by combining Eqs. (16)
and (17) with the steady-state condition �zj = Jj(x,a,�) and
rearranging. The average Gibbs free energy of a reaction in
the cross-catalytic cycle can then be written as

h�i = 1

m

X

j

�j(x,a) � � 1

m

X

j

ln
⇣
1� �

+
j (a,�)

⌘
. (21)

We can further bound the right hand side by first using Jensen’s
inequality and then using the AM-GM inequality,
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Finally, using the definition of fitness in Eq. (20) gives

h�i � � ln(1� �/f(a)). (22)

This result, which is a version of Eq. (13) for cross-catalytic cy-
cles, bounds the average Gibbs free energy of a cross-catalytic
reaction via the dilution rate and replicator fitness.

We now derive a bound on the strength of selection for
cross-catalytic cycles, analogous to Eq. (14). Suppose there
is some other replicator X 0 with lower fitness f 0(a) < f(a).
This other replicator may copy itself via an elementary auto-
catalytic reaction, a multistep autocatalytic mechanism, or a
cross-catalytic cycle. Suppose also that f 0(a)  �, mean-
ing that this replicator is driven to extinction in steady state.
Plugged into Eq. (22), this gives

h�i � � ln(1� f 0(a)/f(a)). (23)

We emphasize that Eqs. (22) and (23) bound the Gibbs free
energy of the average reaction in the cross-catalytic cycle.
Thus, the thermodynamic cost of achieving a given selection
coe�cient s in a cross-catalytic cycle grows (at least) linearly
with the size of the cycle.

V. APPLICATION: DARWINIAN EVOLUTION IN A
CHEMOSTAT

We illustrate our results on a simple model of autocatalytic
replicators in a chemostat. We consider a reaction volume in
which a substrate species A flows in with concentration � and
rate �, while all species flow out with dilution rate �. The
volume can contain up to n replicator species, indicated as
X1, . . . , Xn, where each Xi replicates from substrate A via
an autocatalytic reaction Xi + A � Xi +Xi. This model is
inspired by the standard chemostat setup, as used in microbial
ecology [46, 54], evolutionary biology [55, 56], and origin of
life studies [57, 58]. This model may also represent natural
conditions, e.g., a lake that contains autocatalytic replicators
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We suppose that all autocatalytic reactions are elementary
and have mass action kinetics. The dynamics of replicator and
substrate concentrations are given by

ẋi(t) = kixi(t)[a(t)� e�G�
i xi(t)]� �xi(t)

ȧ(t) = �(� � a(t))�
X

i

kixi(t)[a(t)� e�G�
i xi(t)],

(24)

where ki is a rate constant and ��G�
i is the standard Gibbs

free energy of the reaction Xi +A � Xi +Xi.
This type of dynamical system was studied by Schuster and

Sigmund [29] (see also [30]). They showed that it has a unique
steady state which governs long-term behavior, given by the
following set of coupled equations,

a = � �
X

i

xi, xi = max{0, e��G�
i (a� �/ki)}. (25)

(For more details, see Appendix D, where we also show how
the coupled equations in Eq. (25) can be solved by evaluating
at most n closed-form expressions.)

Although the replicators do not interact directly under the
dynamics of Eq. (24), they do experience an e�ective inter-
action due to competition for the shared substrate A. In
fact, dynamics such as Eq. (24) are closely related to mod-
els of resource competition used in mathematical ecology and
evolutionary biology [46, 54, 55]. These dynamics can also
be mapped onto a competitive Lotka-Volterra system, as dis-
cussed in Appendix D. In that appendix, we show that the
strength of selection grows with increasing dilution rate �
and/or decreasing the inflow substrate concentration �, even-
tually driving the replicators to extinction one-by-one in order
of increasing ki. In the steady state specified by Eq. (25),
replicator Xi becomes extinct once

�

�
 k�1

i +
X

j:kj�ki

e��G�
j (k�1

i � k�1
j ). (26)

We now consider a concrete example of 4 replicators with
rate constants (k1, k2, k3, k4) = (4, 3, 2, 1) and standard Gibbs
free energies ��G�

i given by (1, 2, 3, 2.5). We calculate
steady-state concentrations of the 4 replicators at di�erent
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state is maintained. For example, they apply to a chemostat, in
which the dilution rate � is held constant and substrate species
are supplied at a constant rate [46]. Alternatively, they also
apply to a setup where the substrate/waste species are bu�ered
and the dilution rate is continuously adjusted so as to maintain
the total concentration of replicators constant (i.e., the “con-
stant organization” scheme used in Eigen’s quasispecies model
[23]).

To build intuitions regarding these results, we briefly con-
sider two extreme regimes. At one extreme, the steady state is
an equilibrium one. Here, the autocatalytic current J (x,a,�)
and the Gibbs energy of replication �(x,a) vanishes for all
replicators x, as does the dilution rate�. In this steady state, all
replicators are present in (strictly positive) equilibrium concen-
trations, which do not depend on kinetic properties like fitness.
Thus, there is no selection to speak of.

At the other extreme, the autocatalytic reactions are max-
imally irreversible, so that the backward reaction in Eq. (2)
vanishes and �(x,a) diverges. In this regime, at most a
single replicator can survive in steady state, meaning that
selection is strongest [40, 47]. To see why, imagine that
in steady state, there is some non-extinct and irreversible
replicator X , such that x > 0 and �(a,�) = 0. Then
it must be that +(a,�) = J (x,a,�)/x = � in steady
state, which follows from Eqs. (4) and (5). Now suppose
that there is some other non-extinct replicator X 0 that has
a smaller rate constant +0

(a,�) < +(a,�). This would
imply J 0(x0,a,�)/x0  +0

(a,�) < +(a,�) = �, which
contradicts Eq. (4). Therefore, in the irreversible regime, co-
existence of replicators with di�erent rate constants is impos-
sible.

Finite values of �(x,a) interpolate between these two ex-
treme regimes, permitting the coexistence of some (but not all)
replicators.

IV. CROSS-CATALYTIC CYCLES

Our results can be generalized to certain types of auto-
catalytic sets (i.e., collectively autocatalytic systems) [48].
Suppose that a replicator X represents a set of m species
X = {Z1, . . . , Zm}, where each Zj�1 catalyzes the forma-
tion of species Zj in a cyclical manner,

Zj�1 +
X

j

↵j,iAi � Zj�1 + Zj +
X

j

�j,iAi. (15)

Here we use the convention that Z0 = Zm, and ↵j,i and
�j,i indicate the stoichiometry of substrate/waste products in
each reaction. We term this kind of autocatalytic set a cross-
catalytic cycle. Importantly, each catalytic reaction in the
cross-catalytic cycle can be elementary, or it can be a multistep
cross-catalytic reaction mechanism analogous to Eq. (7). The
autocatalytic reaction considered above, as in Eqs. (2) and (7),
is a special case of a cross-catalytic cycle with m = 1.

A schematic illustration of a 3-member cross-catalytic cycle
is shown in Fig. 2 (left). Cross-catalytic cycles have attracted

A
Z1

Z2

Z3

Z2Z1

A2

A1

A3

A4

Figure 2. Examples of cross-catalytic cycles. Left: a 3-element
cycle; Right: templated replication of complementary dimers.

much attention in the study of the origin-of-life, both theoret-
ically [23, 49, 50] and experimentally [51]. In particular, the
templated replication of complementary polymers, which has
been investigated in numerous experiments [32], is an example
of a two-member cross-catalytic cycle. This is illustrated using
the example of complementary dimers in Fig. 2 (right). In bi-
ology, a cross-catalytic cycle called the “Hinshelwood cycle”
has been proposed as a model of bacterial growth [52, 53].

We assume that in steady state, the current across each
reaction in the cross-catalytic cycle can be written as

Jj(z,a,�) = +
j (a,�)zj�1 � �

j (a,�)zj�1zj , (16)

where z = (z1, . . . , zm) indicates steady-state concentra-
tions of cycle members, a indicates concentrations of sub-
strate/waste products, +

j (a,�) and �
j (a,�) indicate forward

and backward rate constants, and � is the dilution rate. In
steady state, all species Zj are diluted with rate �, so that
�zj = Jj(z,a,�). In addition, we assume that each reaction
in the cycle obeys a flux-force inequality,

�j(z,a) � ln
+
j (a,�)zj�1

�
j (a,�)zj�1zj

, (17)

where �j(z,a) is the Gibbs free energy of the j-th reaction
in the cycle. Assumptions Eqs. (16) and (17) are satisfied
when each reaction is elementary and obeys mass action, or
if each reaction is a multistep cross-catalytic mechanism that
involves a linear sequence of elementary reactions, i.e., the
cross-catalytic version of Eq. (7). (For multistep mechanisms,
Eqs. (16) and (17) can be shown to hold using a similar method
as in Appendix B).

We now analyze the thermodynamics of Darwinian evolu-
tion for cross-catalytic cycles. To do so, we first generalize our
definition of fitness, Eq. (8), for cross-catalytic cycles. For a
single autocatalytic reaction as in Eq. (2), the fitness f(a) is
equal to the maximal dilution rate at which the replicator can
exist in steady state, as in Eq. (9). Similarly, we define the
fitness of a cross-catalytic cycle as the largest dilution rate that
can be sustained in a strictly positive steady state,

f(a) := sup
��0,z2Rm

+

� such that Jj(z,a,�) = �zj for all j. (18)

This definition can also be understood as the maximum growth
rate of the entire cross-catalytic cycle. It will be convenient
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ically [23, 49, 50] and experimentally [51]. In particular, the
templated replication of complementary polymers, which has
been investigated in numerous experiments [32], is an example
of a two-member cross-catalytic cycle. This is illustrated using
the example of complementary dimers in Fig. 2 (right). In bi-
ology, a cross-catalytic cycle called the “Hinshelwood cycle”
has been proposed as a model of bacterial growth [52, 53].

We assume that in steady state, the current across each
reaction in the cross-catalytic cycle can be written as
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where z = (z1, . . . , zm) indicates steady-state concentra-
tions of cycle members, a indicates concentrations of sub-
strate/waste products, +
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and backward rate constants, and � is the dilution rate. In
steady state, all species Zj are diluted with rate �, so that
�zj = Jj(z,a,�). In addition, we assume that each reaction
in the cycle obeys a flux-force inequality,
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, (17)

where �j(z,a) is the Gibbs free energy of the j-th reaction
in the cycle. Assumptions Eqs. (16) and (17) are satisfied
when each reaction is elementary and obeys mass action, or
if each reaction is a multistep cross-catalytic mechanism that
involves a linear sequence of elementary reactions, i.e., the
cross-catalytic version of Eq. (7). (For multistep mechanisms,
Eqs. (16) and (17) can be shown to hold using a similar method
as in Appendix B).
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definition of fitness, Eq. (8), for cross-catalytic cycles. For a
single autocatalytic reaction as in Eq. (2), the fitness f(a) is
equal to the maximal dilution rate at which the replicator can
exist in steady state, as in Eq. (9). Similarly, we define the
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� such that Jj(z,a,�) = �zj for all j. (18)

This definition can also be understood as the maximum growth
rate of the entire cross-catalytic cycle. It will be convenient

j ∈ {1..m} mod m

Zj−1 + ∑i αj,iAi ⇄ Zj−1 + Zj + ∑i βj,iAi

⟨σ⟩ ≥ − ln (1 −
ϕ
f )

 ⟨σ⟩ ≥ − ln (1 −
f′￼

f )

⟨σ⟩ =
1
m ∑

j

σj(z, a)

f(a, ϕ) = ∏
j

κ+
j (a, ϕ)1/m

Fitness of a cross-catalytic cycle 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+
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if each reaction is a multistep cross-catalytic mechanism that
involves a linear sequence of elementary reactions, i.e., the
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single autocatalytic reaction as in Eq. (2), the fitness f(a) is
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3. More general topologies for nonelementary 
replicators and for autocatalytic sets
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as X , undergoes an autocatalytic reaction of the form

X +
X

i

↵iAi � X +X +
X

i

�iAi, (2)

where ↵i and �i indicate the stoichiometric coe�cients of
species A1, A2, . . . , which may serve as substrates or waste
products during replication. A simple special case of Eq. (2)
is autocatalysis from a single substrate, X + A � X + X ,
but many other schemes are also possible. We ignore the
uncatalyzed formation of replicator, such as

P
i ↵iAi �

X+
P

i �iAi, assuming that it occurs at a negligible rate. For
simplicity, we also ignore spontaneous degradation of replica-
tors (in Appendix A we show that our results still hold in the
presence of degradation).

It is important to emphasize that Eq. (2) can represent an
elementary autocatalytic reaction, or (as we discuss below)
a nonelementary reaction mechanism which proceeds via a
sequence of intermediate steps. In addition, further down
below, we consider a generalization of Eq. (2) to collectively
autocatalytic sets, where replication involves a cycle of cross-
catalytic reactions.

We focus primarily on (nonequilibrium) steady states. We
assume that steady-state molecular counts are su�ciently
large so that stochastic fluctuations can be ignored, and we
only consider deterministic concentrations. We use x and
a = (a1, a2, . . . ) to indicate the steady-state concentrations
of replicator X and substrate/waste species Ai respectively.
The Gibbs free energy of the (elementary or nonelementary)
autocatalytic reaction in Eq. (2) can be written as [36]

�(x,a) = � lnx+
X

i

(↵i � �i) ln ai ��G�, (3)

where ��G� is the standard Gibbs free energy of the reaction
(i.e., the Gibbs free energy of the reaction when all reactants
and products are at molar concentration 1). Note that, for nota-
tional convenience, we use the notation �, rather than the more
common ��G, and express � in units of kBT per replication
event, rather than J/mol. In principle, a reaction that releases
� of Gibbs free energy can be coupled to a thermodynami-
cally disfavored “uphill” reaction, and thereby do up to � of
chemical work [36]. Therefore, � represents the dissipated
potential for chemical work and it is a fundamental measure
of the “thermodynamic cost” of replication. We will refer to
�(x,a) as the Gibbs energy of replication.

We assume that in steady state, replicators flow out of the
reaction volume at dilution rate �. We use J (x,a,�) to indi-
cate the steady-state current across the autocatalytic reaction
in Eq. (2). The current may depend on the replicator concen-
tration x and the substrate/waste product concentrationsa, and
the dilution rate �. It may also depend on �, which can be use-
ful for analyzing nonelementary autocatalytic mechanisms, as
considered in Appendix B (the current will not depend on � for
elementary autocatalytic reactions). In steady state, replica-
tor concentration are constant, which means that autocatalytic
current and dilution current must balance,

�x = J (x,a,�). (4)

A

X

A1

X

A2

Figure 1. Examples of multistep autocatalytic reaction mechanisms.
Left: autocatalysis with binding, conversion, and unbinding steps;
Right: templated replication of a self-complementary dimer.

The steady state is nonequilibrium whenever � 6= 0 and x > 0,
since then there is a non-zero current across the autocatalytic
reaction.

We make two assumptions about the autocatalytic current J
in deriving our results. First, we assume that it can be written
in the following form:

J (x,a,�) = +(a,�)x� �(a,�)x2, (5)

where +(a,�) and �(a,�) are (pseudo) rate constants that
may depend on steady-state substrate/waste concentrations a
and the dilution rate � (but not on replicator concentrations x).
Eq. (5) implies that at low concentrations, the current is first-
order in replicator concentration, J (x,a,�) ⇡ +(a,�)x.
Second, we assume that the ratio of backward and forward
fluxes bound the Gibbs energy of replication [37],

�(x,a) � ln
+(a,�)x

�(a,�)x2
. (6)

When Eq. (6) is achieved with equality, it is known as the flux-
force relation, sometimes also called local detailed balance,
in the literature [38, 39]. The flux-force plays a key role in
nonequilibrium thermodynamics [36], since it permits one to
connect the dynamical properties of a chemical reaction (the
forward and backward fluxes) to its thermodynamic properties
(the Gibbs free energy).

When the reaction in Eq. (2) is elementary and has mass
action kinetics, the current can be written as J = k

Q
i a

↵i
i x�

ke�G� Q
i a

�i
i x2 for some constant k [36]. It is clear that this

current has the form of Eq. (5), and satisfies the flux-force
relation in Eq. (6) with equality.

In fact, Eq. (5) and Eq. (6), the weaker inequality version of
the flux-force relation, also hold for many kinds of nonelemen-
tary replication mechanisms, where the production of X +X
from X involves multiple reactions. In Appendix B, we con-
sider an autocatalytic reaction mechanism that involves a se-
quence of m elementary reactions,

X

P
↵1,iAi

P
�1,iAi

Y1

P
↵2,iAi

P
�2,iAi

. . .
· · ·

· · ·

Ym�1

P
↵m,iAi

P
�m,iAi

X +X

(7)
which is sometimes called an “autocatalytic cycle” in the lit-
erature [15, 40, 41]. Note that the intermediate reactions may
consume any number of substrate/waste species Ai, as in-
dicated by the stoichiometric coe�cients ↵j,i and �j,i. A
simple example of this scheme is a three-step catalytic mech-
anism with binding, conversion, and unbinding steps, shown
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